Spatiotemporal Stereo Matching with 3D Disparity Profiles
– Published Date : September 7, 2015
– Category : Stereo Matching
– Place of publication : 26th British Machine Vision Conference (BMVC)
Abstract
Adaptive support weights and over-parameterized disparity estimation truly improve the accuracy of stereo matching by enabling window-based similarity measures to handle depth discontinuities and non-fronto-parallel surfaces more effectively. Nevertheless, a disparity map sequence obtained in a frame-by-frame manner still tends to be inconsistent even with the use of state-of-the-art stereo matching methods. To solve this inconsistency problem, we propose a window-based spatiotemporal stereo matching method. We exploit the 3D disparity profile, which represents the disparities and window normals over multiple frames, and incorporate it into the PatchMatch Belief Propagation (PMBP) framework. Here, to make the 3D disparity profile more reliable, we also present the optical flow transfer method. Experimental results show the proposed method yields more consistent disparity map sequences than does the original PMBP-based method.