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ABSTRACT

We propose an approach to compute dense disparity maps that takes the characteristics of man-made
environments into account. The key contribution is to generate a piecewise planar disparity map while
preventing the oversimplification problem in non-planar regions. To achieve this, we decompose the
stereo matching problem into three sequential subproblems: initial disparity map estimation, plane hy-
potheses generation, and global optimization with plane hypotheses. After finding an initial disparity
map, we find local and global plane hypotheses from the disparity map through segmentation-based
local plane fitting, agglomerative hierarchical clustering, and energy-based multi-model fitting tech-
niques. We then estimate a disparity map that is a mixture of over-parameterized and scalar disparity
values while identifying unreliable pixels in an energy minimization framework; disparity values in
planar regions are parameterized as a plane, disparity values in non-planar regions are represented as
scalar, and unreliable pixels are marked as outliers. As a post-processing step, we perturb assigned
plane parameters as well as scalar disparity values. We experimentally verify the proposed method
using publicly available benchmarks and various stereo matching algorithms.

c© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The 3D reconstruction of man-made environments is an im-
portant computer vision research topic, owing to its wide range
of applications. Man-made environments, especially indoor
and architectural scenes, usually exhibit a high degree of struc-
tural regularity (Furukawa et al. (2009); Schindler and Del-
laert (2004); Gallup et al. (2007); Straub et al. (2014)) owing
to their axis-aligned geometry and planar scene structures; ac-
cordingly, these characteristics have been used to constrain the
stereo matching problem (Furukawa et al. (2009); Gallup et al.
(2007)). However, these assumptions can be easily violated in
more complicated environments, and can lead to oversimplified
results. Ironically, however, if we do not explicitly constrain the
stereo problem, the characteristics of man-made environments,
such as large homogeneous regions and non-fronto-parallel sur-
faces, may cause various stereo ambiguities. Therefore, a num-
ber of algorithms address these two problems in the context of
matching cost computation (Bleyer et al. (2011)) and global op-
timization (Hirschmüller (2008); Taniai et al. (2017); Li et al.
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(2015)) to estimate accurate disparity maps while preserving
detailed scene structures. However, existing algorithms begin
to fail as the degree of ambiguity increases, e.g., nearly constant
intensities over a large region. For example, two state-of-the-art
methods SGM-Net (Seki and Pollefeys (2017)) and LocalExp
(Taniai et al. (2017)) generate erroneous results for a challeng-
ing dataset (Scharstein et al. (2014)), as shown in Figs. 1(c)
and 1(d).

In this regard, we primarily focus on estimating a dispar-
ity map in a highly ambiguous man-made environment. Our
approach is straightforward—because depth maps captured in
man-made environments usually contain a large number of pla-
nar regions, the estimation of plane hypotheses can effectively
improve stereo matching performance as long as oversimplifi-
cation is avoided in non-planar regions. In particular, to handle
largely ambiguous regions, we extract dominant planar struc-
tures in the scene and exploit them as global reconstruction
cues (Gallup et al. (2007); Hadfield and Bowden (2015)) in-
stead of having strong priors on the scene, e.g., axis-aligned
geometry (Furukawa et al. (2009)). At the same time, we con-
sider non-planar regions and occluded pixels in the global en-
ergy minimization framework, in order to selectively approxi-
mate disparity values as planes and to identify pixels that cannot
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(a) Input image (Shelves) (b) Proposed (12.2%)

(c) SGM-Net (27.1%) (d) LocalExp (30.0%)

Fig. 1. A comparison of disparity maps for Shelves dataset. Although
three methods use deep learning-based matching costs to compare image
patches, (c) and (d) suffer from poorly textured regions. However, with the
aid of global planes, the proposed method generates a significantly better
result than the state-of-the-art methods. The percentages indicate the bad
pixel rates of the disparity maps at the threshold value of 2.0px. Error
maps are shown in the top-right corner of each disparity map.

be matched reliably.
To be more specific, we treat the stereo matching problem

as a series of subproblems, as described in Fig. 2. First, we
estimate an initial disparity map; in our framework, any exist-
ing stereo algorithm can be adopted to perform this task. We
utilize state-of-the-art methods as well as popularly used meth-
ods to compute initial disparity maps, in order to show the pro-
posed methods robustness to different initial methods. Second,
we detect local and global plane hypotheses through segment-
based local plane fitting, agglomerative hierarchical clustering
(Mllner (2013)), and energy-based multi-model fitting (Isack
and Boykov (2012)). Hierarchical clustering reduces redun-
dant planes from initially extracted plane hypotheses and the
energy-based fitting gives plane hypotheses that best describe
the scene with the minimum number of planes. This set of min-
imum planes are used as global plane hypotheses. Third, we
estimate a disparity map as a mixture of over-parameterized dis-
parity, scalar disparity, and outlier pixels in a pairwise Markov
random field using graph cuts (Boykov et al. (2001); Delong
et al. (2012)) with local and global reconstruction cues. Finally,
we perturb assigned plane hypotheses to better align plane hy-
potheses with scene structures.

The remainder of the paper is organized as follows. A lit-
erature review is given in Sec. 2 and the proposed method is
explained in Sec. 3. In Sec. 4, we experimentally verified the
performance of the proposed method from various aspects, e.g.,
the dependency on initial disparity maps and conclude the paper
in Sec. 5.

2. Related Work

We review various stereo algorithms that handle the difficul-
ties in man-made environments, e.g., non-fronto-surfaces and
homogeneity, and discuss recent trends in stereo matching.

To handle the planarity and non-fronto-surfaces found in
many scenes, numerous stereo algorithms have been devel-
oped. We divide previous studies into two groups; the first
group explicitly finds plane parameters for each pixel or re-
gion and the second group implicitly handle slanted sur-
faces in the global minimization framework. The first group,
can be subdivided into three approaches: segmentation-based
approach, PatchMatch-based approach, and plane-sweeping
approach, though more than two approaches can be com-
bined together, e.g., PatchMatch-based matching costs with
segmentation-based global optimization (Li et al. (2017b)). The
segmentation-based stereo matching approach has long been
studied since the early work of Birchfield and Tomasi (1999).
In general, the segmentation-based approach segments images
into multiple non-overlapping regions and assign plane param-
eters to each region (Birchfield and Tomasi (1999); Hong and
Chen (2004); Klaus et al. (2006); Yamaguchi et al. (2014);
Wang and Zheng (2008)), and then, segment and depth informa-
tion is iteratively merged or refined through various optimiza-
tion techniques such as graph cuts (Hong and Chen (2004)),
belief propagation (Klaus et al. (2006)), and cooperative opti-
mization (Wang and Zheng (2008)). One crucial drawback of
the segmentation-based approach is that it depends on the qual-
ity of initial disparity maps and segmentation. To avoid the
dependency on the initial disparity map, Muninder et al. (2014)
proposed to assign plane hypotheses to each pixel rather than
each region, assuming that the initial set of planes is the super-
set of the actual set of planes that describe the scene. The initial
plane set is extracted from an oversegmented disparity map, and
then, one of the planes is assigned to each pixel through cost
volume filtering. This approach, however, initially extracts a
large number of plane hypotheses owing to oversegmentation
so that it is not suitable for high-resolution images.

Similarly, Bleyer et al. (2011) proposed a PatchMatch stereo
algorithm that overparamerizes each pixel with a local dis-
parity plane. Instead of extracting planes fromt the dispar-
ity map, they utilized the PatchMatch algorithm (Barnes et al.
(2009)) to effectively search optimal planes. Afterward, sev-
eral studies, Besse et al. (2012); Li et al. (2015, 2017b), tried
to link the PatchMatch stereo algorithm to a global optimiza-
tion algorithm, i.e., belief propagation (Sun et al. (2003)),
mainly focusing on handling a continuous label space. A re-
cent work of Taniai et al. (2017) applies graph cuts to a con-
tinuous labeling problem by employing multiple local expan-
sion moves to small grid regions. They differenciated candi-
date α-labels for each grid and propagated assigned labels for
nearby regions to handle a large number of labels effectively.
In addition, Li et al. (2017a) extended the conventional min-
imum spanning tree (MST)-based cost aggregation scheme to
PatchMatch-based continuous 3D labels by introducing multi-
ple MST structures and tree-level random search. These two
studies show state-of-the-art results in the Middlebury bench-
mark (Scharstein et al. (2014)).

The plane-sweeping stereo of Gallup et al. (2007) aimed at
reconstructing an urban environment in real-time assuming the
captured scene consists of planes parallel to three orthogonal
planes. Based on this assumption, they proposed a method to
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Fig. 2. Overview of the proposed method.

extract orthogonal planes from sparse correspondences. After
inducing a set of plane hypothese that are parallel to orthog-
onal planes, they warped the target image by using the plane
hypotheses. Finally, the disparity value of each pixel is de-
termined by using one of the plane hypotheses, after compar-
ing the reference image and warped images. Afterward, Gallup
et al. (2010) extended this idea by handling non-planar regions
such as bushes and trees from planar regions to avoid oversim-
plification. To acheive this, they trained a supervised classifier
to distinguish planar and non-planar regions. A more recent
work of Sinha et al. (2014) computes hundreds of local sweep-
ing directions from a set of sparse correspondences, in order to
handle more complex scenarios. Häne et al. (2014) modified
conventional plane-sweeping stereo for general cameras such
as fisheye and omnidirectional cameras through an adaptation
of camera projection models.

Similar to plane-sweeping stereo, Manhattan world stereo
(Furukawa et al. (2009)) assumes axis-alighed geometry
(Coughlan and Yuille (2000)). They found axis-aligned plane
hypotheses from an oriented point cloud, and then, assigned
one of the planes to each pixel through graph cuts. The At-
lanta world assumption (Schindler and Dellaert (2004)) and the
mixture of Manhattan frames (Straub et al. (2014)) extend the
Manhattan world assumption to more general scnearios, nev-
ertheless, these assumptions were rarely used for scene recon-
struction.

The fourth group, in contrast, does not compute plane pa-
rameters explicitly. The semi-global matching (SGM) method
(Hirschmüller (2008)) is widely used in driving environments,
owing to the methods simplicity and accuracy. To preserve
slanted surfaces, SGM gives a small penalty to pixels hav-
ing small disparity differences with its neighbors, otherwise,
it gives a large penalty to pixels. Several studies advanced
the conventional SGM method by reducing memory usage
(Hirschmüller et al. (2012); Lee et al. (2018)) or by adopting
deep learning techniques (Seki and Pollefeys (2017)). From
the global optimization point of view, Woodford et al. (2009);
Zhang et al. (2014a) tried to impose second-order smoothness
priors to better preserve non-fronto-surfaces. Because the sec-
ond order model is non-submodular, Woodford et al. (2009)
solved the problem using the quadratic pseudo-Boolean opti-

mization (QPBO) algorithm (Kolmogorov and Rother (2007)).
Zhang et al. (2014a) utilized the Laplacian operator to impose
pixel-wise second-order smoothness. From the local optimiza-
tion point of view, Einecke and Eggert (2014) handled slanted
surfaces in the matching cost aggregation step by using mul-
tiple local windows. They confirmed that a simple aggrega-
tion method can outperform complicated methods as long as
the matching cost is carefully aggregated.

Because many recent studies employed deep learning tech-
niques to compute disparity maps, we briefly review related stu-
ides. Notably, Z̆bontar and LeCun (2015)’s work, also known
as MC-CNN, confirmed the significance of a convolutional neu-
ral network (CNN). They trained a CNN to predict the simi-
larity between two patches. Although they used existing ag-
gregation methods to compute the disparity map, they reported
accurate results in both indoor (Scharstein et al. (2014)) and
outdoor benchmarks (Geiger et al. (2013)). Chen et al. (2015)
simplified MC-CNN by replacing fully connected layers with a
dot product operation that provides significantly faster perfor-
mance than the original method. Luo et al. (2016) designed a
dot product layer instead of computing feature vectors from the
network. Park and Lee (2016) employed an additional pool-
ing layer to take large image patches, e.g., 37×37, as input.
On the other hand, many researchers investigated end-to-end
networks to predict disparity maps especially in driving envi-
ronments. Notably, Mayer et al. (2016) introduced an end-to-
end architecture to train disparity (DispNet) and optical flow
(FlowNet). They initially trained counvolutional neural net-
works (CNNs) using large synthetic datasets and the networks
were fine-tuned by using real data. Knöbelreiter et al. (2017)
designed a network that combines CNN and CRF in a uni-
fied network based on the structured output support vector ma-
chine. Interestingly, Kendall et al. (2017); Liang et al. (2018)
designed end-to-end networks while mimicking a conventional
stereo matching pipeline. Kendall et al. (2017) constructed a
3D cost volume from deep unary features, and then, 3D con-
volution and soft argmin operation are carried out to compute a
disparity map. Whereas Liang et al. (2018) decomposed the en-
tire procedure into multi-scale feature extraction, disparity esti-
mation, and disparity refinement steps. Chang and Chen (2018)
extended the idea of Kendall et al. (2017) by adding the spa-
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tial pooling module to compute deep unary features and by re-
placing the 3D convolution network with the stacked hourglass
model (Newell et al. (2016)). Pang et al. (2017) proposed a two-
stage network called cascade residual learning (CRL) where the
first step computes a disparity map with DispNet with extra
up-convolutions and the second step refines the disparity map
based on residual signals across multiple scales.

Besides deep learning techniques, which mostly focus on
computing accurate initial matching costs, several studies ad-
dress the stereo matching problem from a different perspective.
Güney and Geiger (2015) addressed transparent and reflective
surfaces with specific object knowledge. To selectively refine
disparity values of cars in the post-processing step, they aligned
car CAD models after computing the disparity map. Hadfield
and Bowden (2015) employed high-level scene cues (such as
common configurations of surfaces and edge classes) in order
to leverage stereo matching.

3. Proposed Method

We regard the stereo matching problem as a sequence of sub-
problems. First, we compute an initial disparity map D0 using
an existing algorithm. We then generate two sets of plane hy-
potheses P from the disparity map. Afterward, we estimate the
final disparity map H. Here, H is the disparity map, which con-
sists of over-parameterized disparity values (Besse et al. (2012);
Klaus et al. (2006)), scalar disparity values, and outlier pixels.
For example, the disparity value of a pixel can be defined by us-
ing plane parameters, e.g., d = apx + bpy + c, or can be defined
as a scalar value, to avoid oversimplified results in non-planar
regions.

3.1. Initial disparity map estimation
The primary goal of computing the initial disparity map is to

extract plane hypotheses from the scene, assuming that the cap-
tured image contains a number of planar regions, e.g., walls and
desks. Because different initial disparity maps can yield dif-
ferent plane hypotheses, one may argue that this approach has
dependency on the initial disparity map estimation algorithm.
However, we also claim that the proposed method consistently
improves the quality of initial disparity maps (even poor-quality
maps) because of two reasons. First, the proposed method
robustly extracts plane hypotheses in the global optimization
framework. Second, once plane hypotheses are computed, we
do not simply approximate the initial disparity map as a set of
piecewise planar regions. Instead, we examine image patches
with the aid of the computed plane hypotheses. Therefore, if
the initial disparity map is accurate, only a few erroneous pixels
are replaced with new disparity values, whereas a large number
of pixels will be changed as the number of mismatched pixels
increases.

To verify the independence of the initial disparity estimation
step, we employ various stereo matching algorithms, including
state-of-the-art algorithms (Z̆bontar and LeCun (2016); Taniai
et al. (2017); Seki and Pollefeys (2017)) as well as popularly
used algorithms (Hirschmüller (2008)), as the front-end step of
the proposed method. Note that we do not specifically consider
the characteristics of the employed stereo matching algorithm.

3.2. Plane hypotheses generation
Given an initial disparity map, we generate two sets of plane

hypotheses, P = {Plocal,Pglobal}, where the subscripts indicate
that they are local and global plane hypotheses. First, we seg-
ment the input image into a set of superpixels (Achanta et al.
(2012)) S = {s1, ..., sn} and find n local plane hypotheses from
each superpixel, where n is the number of superpixels. To com-
pute a local plane hypothesis, we find inlier pixels using the
RANSAC technique, and then fit a plane to inlier pixels for each
superpixel in a least square manner. Therefore, each pixel in
a superpixel has its corresponding local plane hypothesis, i.e.,
pixels in a superpixel si share the same local plane hypothe-
ses πi. In general, local plane hypotheses do not describe the
scene structure accurately, because the pixels in a segment do
not always lie on a coplanar surface. Moreover, incorrect plane
parameters can be estimated from a largely erroneous region, as
shown in Fig. 1.

In this sense, we find global plane hypotheses in order to use
them as a global reconstruction cue, and to handle largely am-
biguous regions by minimizing the following energy function:

E(Pglobal|P̂local,D0) =
∑

p
U(π>i p,D0(p)) + β|LP|, (1)

which consists of the unary term and the label cost term (Isack
and Boykov (2012)). β balances two terms. π>i p is a disparity
value in which πi = [ai bi ci]> and p = [px py 1]>. D0(p) is
an initial disparity value at p. Here, we use the clustered local
plane hypotheses P̂local instead of Plocal, which is described at
the end of this subsection. The unary term is defined as follows:

U(π>i p,D0(p)) =

{
|π>i p − D0(p)| if πi , π∅,
γd otherwise, (2)

where the unary term measures the discrepancy between the ini-
tial disparity value and the reconstructed disparity value π>i p.
Here, we employ the null hypothesis π∅ to assign this label
to pixels having noisy disparity values or in small planar re-
gions, instead of assigning one of the plane hypotheses in P̂local.
The second term is the label count penalty (Isack and Boykov
(2012)) for using the minimum number of plane hypotheses to
describe the initial disparity map. LP is the set of distinct la-
bels, i.e., plane hypotheses, assigned to all pixels. Together with
the null hypotheses and the label count penalty, the minimiza-
tion of Eq. (1) assigns a set of plane hypotheses that describe the
scene with the minimum number of plane hypotheses. Finally,
we set Pglobal to LP\π∅. We solve this energy function using
graph cuts that supports label costs (Delong et al. (2012)).

Local plane clustering: BecausePlocal contains a large number
of redundant plane hypotheses, we merge similar local plane
hypotheses through agglomerative hierarchical clustering (Mll-
ner (2013)) based on the linear combination of two distance
metrics,

C(i, j) = αCp(i, j) + (1 − α)Cc(i, j), (3)

where C(i, j) measures the distance between two planes, e.g., πi

and π j. The first distance metric is the average squared differ-
ence of reconstructed disparity values,

Cp(i, j) =
1

|si ∪ s j|

∑
p∈{si∪s j}

(π>i p − π>j p)2, (4)
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where π>i p and π>j p are reconstructed disparity values using two
plane parameters at the position of p. si and s j indicate super-
pixels in which pixels in si and s j were used to compute πi and
π j, respectively. Instead of directly comparing plane param-
eters, e.g., an angle between normal vectors and the distance
from the camera, we employ the residual of the disparity val-
ues, because this residual describes the geometric relationship
between local plane hypotheses effectively with a single value.
For example, the residual increases proportionally to the dis-
tance between two superpixels in the image coordinates (un-
less they are perfectly coplanar). The second metric utilizes the
color or intensity difference between superpixels and is defined
as

Cc(i, j) = 1 −
∑

c∈{R,G,B}

(
min(hc(i), hc( j))
max(hc(i), hc( j))

)
, (5)

where hc(i) is the normalized color or intensity histogram for
pixels within superpixel si. Based on the distance matrix, sim-
ilar planes that have the smallest distance are merged into the
same plane, and the distance matrix (e.g., the distance between
the merged plane and the other segments) is updated by the av-
erage formula (Mllner (2013)),

C(i ∪ j,m) =
niC(i,m) + n jC( j,m)

ni + n j
, (6)

where ni is the number of planes that have been merged to the
ith segment and m is an index of other segments. This sequen-
tial merging procedure is repeated until the minimum distance
value exceeds the cutoff value. The use of a cutoff value al-
lows a varying number of segments depending on the structure
of the scene, rather than fixing the number of clustered seg-
ments. After clustering, we estimate plane parameters again us-
ing RANSAC for each clustered segment and denote estimated
plane hypotheses as P̂local.

3.3. Disparity map estimation with plane hypotheses
In this step, we estimate the disparity map H in which the

disparity value of a pixel can be 1) over-parameterized, e.g.,
H(p) = π>i p, 2) scalar, e.g., H(p) = D0(p), and 3) labeled as an
outlier, e.g., H(p) = φ, as described in Fig. 3. Here, φ means
that the pixel has an empty value that is refined through post-
processing. To compute H, we formulate the following energy
function:

E(H|P, I,D0,S) =
∑
p

U(p, πi) + λaps
∑

(p,q)∈N
V(p,q), (7)

where the unary term is defined as

U(p, πi)

=


s(p, πi) if πi ∈ Pglobal,
s(p, πi) + ε1 if πi ∈ Plocal and p ∈ si,
s(p,D0(p)) + ε2 if πi = πnon-plane,
γp if πi = πoutlier,

s.t. ε1 < ε2.

(8)

Here, the dissimilarity function s(p, πi) compares two image
patches from the reference image, e.g., the left image, centered
at p, and from the target image at the shifted position of p by

(a) Input image (Playtable) (b) Initial disparity map

(c) Global-plane regions (d) Local-plane regions

(e) Non-plane regions (f) Disparity map w/o outlier pixels

Fig. 3. Disparity map estimation with local and global plane hypotheses. In
(c)-(e), white indicates pixels that have been labeled as one of the follow-
ing: global plane hypotheses (c), local plane hypotheses (d), or non-plane
regions (e). The estimated disparity map (f) is the result of minimizing
Eq. 7, in which the bad pixel rate in non-occluded regions is reduced from
15.69% (Einecke and Eggert (2015)) (b) to 8.60%. Moreover, unreliable
pixels do not have disparity values because of the πoutlier label. These un-
reliable pixels are handled through the post-processing step.

the amount of πT
i p or D0(p) along the scanline. We adopt MC-

CNN (Z̆bontar and LeCun (2016)) to compare image patches;
most recent algorithms adopt this approach because of its high
performance. Moreover, we use the initial disparity value to
consider pixels in non-planar regions. The pairwise term en-
forces the smoothness of labels between neighboring pixels us-
ing the Potts interaction model

V(p,q) = wp,q · T (πi , π j), (9)

where wp,q is a non-negative weight between two pixels

wp,q =

{
P1 if |I(p) − I(q)| < τgrad,
P2 otherwise, (10)

that increases the strength of smoothing if the intensity or color
difference between neighboring pixels is less than a predefined
value τgrad. T (πi , π j) is a binary penalty function that returns
one if two pixels have the different labels, and zero otherwise.

In contrast to previous studies (Besse et al. (2012); Bleyer
et al. (2011)), our objective function does not assign plane pa-
rameters to all pixels. Instead, we exploit two additional la-
bels, πnon-plane and πoutlier, to consider non-plane regions as well
as pixels that cannot be matched reliably. This energy func-
tion is the key contribution of the study; it relaxes the resul-
tant disparity map as a mixture of over-parameterized dispar-
ity values, scalar disparity values, and outliers, with the aid of
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global and local plane hypotheses. To distinguish different la-
bels and planes, we examine the dissimilarity between pixels
and employ two bias values, ε1 and ε2, to avoid the follow-
ing situation. If the initial disparity map has smooth dispar-
ity values in a planar region, matching costs for different labels,
Plocal,Pglobal, and πnon-plane, are likely to be similar to each other
because D0(p) ≈ π>i p. In this case, we assign the highest pri-
ority to the global plane, and the second highest priority to the
local plane by simply assigning a small bias value.

On the other hand, Eq. (7) extends the idea of plane sweep-
ing stereo Gallup et al. (2007); Sinha et al. (2014) in consider-
ation of various reconstruction cues from the scene. The plane
sweeping approach is highly efficient compared to conventional
approaches, especially in cases in which the range of disparity
values is large, e.g., high-resolution images or wide baseline
cameras, because the number of plane hypotheses is generally
less than the range of disparity values. In the case shown in
Fig. 3, the number of labels is 15 whereas the size of the orig-
inal disparity range was 145. Among 15 labels, 12 labels were
used to consider global plane hypotheses and the other three
labels were used for the remaining hypotheses. Here, Plocal
and πnon-plane each require only one label, because a pixel has
neither more than one local hypothesis nor multiple initial dis-
parity values. Note that if an important plane is missing, our
approach does not degrade the quality of disparity maps signif-
icantly, owing to the non-plane label.

3.4. Post-processing

The disparity map obtained in the previous step significantly
improves the quality of the initial disparity map. However, the
scene structure may not be perfectly planar in practical situa-
tions, and plane parameters are prone to small errors caused
by disparity errors. To further improve the disparity map H, we
perturb plane parameters assigned to each pixel. To this end, we
define a new energy function for computing a refined disparity
map Ĥ,

E(Ĥ|H, I) =
∑

πi∈{P∪πnon-plane}

E(Ĥ|H = πi, I), (11)

where Ĥ is the refined disparity map. Here, H = πi indicates the
pixels that have the same label, i.e., plane parameters. There-
fore, we slightly change the disparity value by perturbing an
assigned plane hypothesis or a disparity value, rather than as-
signing different plane hypotheses. Moreover, we do not refine
pixels having the φ value at this moment, because these pixels
usually do not have correspondences, e.g., pixels in the leftmost
columns or in the occluded regions as described in Fig. 3(f),
such that correct disparity values cannot be recovered by exam-
ining image patches. Then, we define each subproblem as

E(Ĥ|H = πi, I) =
∑
p

U(p, π(k)
i ) + λperVL(p,q). (12)

Here, we define the unary term in a similar manner as Eq. (8):

U(p, π(k)
i ) =

{
s(p, π(k)

i ) if πi ∈ P,
s(p,D(k)0(p)) if πi = πnon-plane,

(13)

(a) After minimizing Eq. (7) (b) After minimizing Eq. (11)

(c) Error map for (a) (d) Error map for (b)

Fig. 4. Perturbation-based disparity map refinement. Disparity map (b)
is refined from (a). Although (a) and (b) appear identical, bad pixels are
significantly reduced after the refinement procedure, as shown in (d).

where π(k)
i indicates a perturbed plane of πi, e.g., π(k)

i = πi +

[0 0 zk]> such that zk is additive noise. We only perturb the
disparity along the z-direction because of two reasons. The first
reason is for the sake of simplicity if we perturb other elements,
the size of the configuration space increases either quadratically
or cubically. The second reason is that changing the last el-
ement was sufficient to refine the disparity map as shown in
Fig. 3(b). If the non-plane label is assigned, we perturb the ini-
tial disparity value D0(p) with zk, e.g., D(k)

0 (p) = D0(p) + zk.
For the pairwise term, we slightly change Eq. (9), e.g., T (π(k)

i ,

π
( j)
i ), in which the smoothness constraint is enforced between

perturbed planes or disparity values.

On the other hand, two energy functions, Eqs. (7) and (11),
can be combined into a single energy function by considering
more plane hypotheses, e.g., perturbed planes, in Eq. (7). How-
ever, this increases the size of the label space proportional to the
number of perturbed planes. Moreover, Eq. (12) can be easily
parallelized.

After the perturbation-based refinement step, we further im-
prove the quality of the disparity map through conventional
techniques. First, we estimate parabola-based subpixel dis-
placements of pixels in non-plane regions, because they have
discrete disparity values. Second, we propagate plane pa-
rameters or disparity values along the scanline from left to
right Bleyer et al. (2011) to interpolate disparity values for pix-
els having the φ value. Third, we perform the median filter with
a 5×5 size kernel. Afterward, we run the fast weighted median
filter Zhang et al. (2014b) and employ filtered disparity values
if the difference between the input disparity value and the filter
response is larger than a predefined constant value τdisc, in order
to refine disparity values along the depth discontinuity; other-
wise, the weighted median filter can significantly degrade the
quality of disparity maps, owing to blocking artifacts or texture
copying.
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Table 1. Quantitative evaluation for the Middlebury 2014 benchmark at half resolution. Different algorithms are compared in terms of bad pixel rates
in non-occluded regions, using a threshold value of 2.0px. Here, the average error indicates the weighted average bad pixel rates that were computed by
assigning a small weight (0.5) to challenging datasets, including PianoL, Playroom, Shevles, Playtable, Vintage, Australia, ClassroomE, DjembL, Hoops,
Livingroom, and Staircase, to decrease the influence of ill-conditioned datasets. The tables are written in the ascending order of average errors. Results
are written in bold if the difference between the initial disparity map and the final disparity map is larger than 3%.

Adiron ArtL Jade Motor MotorE Piano PianoL Pipes Playrm Playt PlaytP Recyc Shelevs Teddy Vintage Avg.
LocalExp 1.20 3.53 8.95 3.38 3.64 9.11 14.7 3.97 9.07 6.45 5.85 6.50 30.0 2.64 5.24 6.52
LocalExp-apap 1.39 4.69 10.1 3.69 3.83 9.17 13.0 4.13 8.46 6.85 5.23 6.70 17.2 3.16 5.56 6.21
SGM-Net 2.77 4.86 11.9 3.30 3.57 8.71 13.4 3.45 8.66 6.50 6.10 6.55 27.1 2.89 11.5 7.01
SGM-Net-apap 1.88 5.57 9.09 3.71 4.15 7.93 13.4 4.10 7.65 8.21 5.88 6.63 17.9 3.27 6.41 6.32
3DMST 1.53 4.66 10.7 3.96 4.35 10.0 15.6 4.99 9.86 5.73 5.25 6.39 29.9 2.68 6.92 7.08
3DMST-apap 2.04 4.66 10.4 4.03 4.50 8.63 13.8 4.82 9.39 6.41 5.34 6.11 14.8 3.22 6.86 6.35
LW-CNN 2.81 4.86 13.0 3.10 3.29 11.7 17.4 3.66 11.9 10.4 9.63 6.97 30.5 2.68 14.3 8.31
LW-CNN-apap 2.20 4.71 10.2 3.83 3.94 10.0 14.3 4.07 8.41 6.91 7.17 6.98 16.2 2.98 6.01 6.56
MeshExt 3.53 6.76 18.1 5.30 5.88 8.80 13.8 8.10 11.1 8.87 8.33 10.5 31.2 4.96 12.2 9.51
MeshExt-apap 2.33 5.19 14.3 4.25 4.55 8.48 12.0 5.84 9.23 6.32 6.24 7.59 20.4 3.40 6.36 7.14
MC-CNN 3.33 8.04 16.1 3.66 3.76 12.5 18.5 4.22 14.6 15.1 13.3 6.92 30.5 4.65 24.8 10.3
MC-CNN-apap 2.39 5.77 17.0 3.98 4.23 11.4 14.7 4.52 10.1 10.8 9.42 7.38 18.6 3.29 8.19 8.05
MBM 8.2 8.9 17.5 5.45 5.49 16.5 25.2 6.09 18.5 15.7 15.5 10.6 38.5 5.0 29.5 13.0
MBM-apap 3.04 7.22 13.5 4.39 4.68 10.7 16.1 5.35 10.1 8.60 8.11 7.70 12.2 5.16 7.97 7.78
SGM 15.3 7.69 18.1 10.9 8.90 16.4 29.1 11.5 21.7 52.5 15.8 14.6 46.4 6.52 39.3 17.6
SGM-apap 4.23 6.10 12.2 4.63 4.78 12.4 18.2 6.05 13.8 21.3 10.0 8.01 25.7 3.66 8.36 9.26

Austr AustrP Bicyc2 Class ClassE Compu Crusa CrusaP Djemb DjembL Hoops Livgrm Nkuba Plants Stairs Avg.
LocalExp 3.65 2.87 2.98 1.99 5.99 3.37 3.48 3.35 2.05 10.3 9.75 8.57 14.4 5.40 9.55 5.43
3DMST 3.71 2.78 4.75 2.72 7.36 4.28 3.44 3.76 2.35 12.6 11.5 8.56 14.0 5.35 8.87 5.92
LW-CNN 4.65 3.95 5.30 2.63 11.2 5.41 4.32 4.22 2.43 12.2 13.4 13.6 14.8 4.72 12.0 7.04
MeshExt 4.41 3.98 5.40 3.17 10.0 8.89 4.62 4.77 3.49 12.7 12.4 10.4 14.5 7.80 8.85 7.29
MBM-apap 5.43 4.91 5.11 5.17 21.6 6.99 4.31 4.23 3.24 14.3 9.78 7.32 13.4 6.30 8.46 7.26
SGM-Net 4.71 3.69 4.93 3.18 11.1 5.37 5.57 5.81 2.65 14.5 13.2 13.1 14.8 5.63 11.2 7.37
MC-CNN 5.59 4.55 5.96 2.83 11.4 8.44 8.32 8.89 2.71 16.3 14.1 13.2 13.0 6.40 11.1 8.29
HybridCNN-CRF 4.09 3.97 8.44 6.93 11.1 13.8 19.5 19.0 3.66 17.0 18.2 18.0 21.0 7.29 17.8 12.5

4. Experimental Results

To evaluate the proposed method, we used two popular
datasets: the Middlebury 2014 benchmark (Scharstein et al.
(2014)) and the KITTI 2015 benchmark (Geiger et al. (2013)).
In particular, the Middlebury 2014 benchmark provides vari-
ous challenging scenarios containing large homogeneous re-
gions, illumination changes, occlusions, and rectification er-
rors. We analyzed characteristics of the proposed method from
various aspects, including failure cases and the sensitivity of
our method against changes to important parameters.

Parameter setting: To compute initial disparity maps, we em-
ployed various state-of-the-art methods and popularly used al-
gorithms as the first step; these include MC-CNN (Z̆bontar and
LeCun (2016)), MeshStereo (Zhang et al. (2015)), MBM (Ei-
necke and Eggert (2015)), SGM (Hirschmüller (2008)), Local-
Exp (Taniai et al. (2017)), and SGM-Net (Seki and Pollefeys
(2017)). Therefore, we inserted “-apap” at the end of the al-
gorithms’ names to indicate that the proposed method utilized
a specific algorithm to acquire the initial disparity maps. To
generate local plane hypotheses, we set the size of a super-
pixel Achanta et al. (2012) to 50, the regularization parameter
to 20, α to 0.5, the cutoff threshold to 50, β to 1000, and γd to
10. For RANSAC, we set the inlier threshold to 1.5px and the
number of iterations to 500. To estimate H, we set λaps to 28,
ε1 to 0.05, ε2 to 0.10, γp to 0.55, τgrad to 9, P1 to 1, P2 to 3, and
λper to 10. For perturbation-based refinement, we added a noise
vector [0 0 zk]> to the plane hypotheses such that zk is an integer
value in −2 ≤ zk ≤ 2, and similarly, added zk to scalar disparity

values. For the weighted median filter Zhang et al. (2014b), we
set the radius of a window to 5, the regularization parameter to
1.5, and τdisc to 4. For all energy minimization procedures, we
used graph cuts Delong et al. (2012).

4.1. Middlebury 2014 benchmark

First of all, the proposed method was shown to be effec-
tive when the captured image contains largely homogeneous
regions such as walls and ceilings. For example, Shelves and
Vintage datasets contain large homogeneous regions; in this
case, the global plane hypotheses played an important role in
recovering underlying structures because the homogeneous re-
gions were planar regions as shown in Fig. 7. Interestingly,
even when the state-of-the-art methods were used as input, the
proposed method reduced the number of bad pixels for Shelves
and Vintage as described in Tab. 1. This improvement verifies
that the proposed approach is desirable for man-made environ-
ments, especially when the captured image contains large tex-
tureless regions. In addition, the proposed method showed ac-
curate results for highly ambiguous regions resulting from dif-
ferent lighting conditions and reflective surfaces, e.g., PianoL
and Playroom, for which existing algorithms frequently fail to
estimate accurate structures. For the testing dataset, we could
not evaluate various methods, because the Middlebury bench-
mark does not allow multiple submissions. Therefore, we only
uploaded MBM-apap, to show that a simple and efficient ap-
proach Einecke and Eggert (2015) can achieve state-of-the-art
performance if it is coupled with the proposed method. Here,
MBM refers to multi-block matching that aggregates match-
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(a) PianoL (b) Playroom (c) Playtable (d) Shelves

(e) Vintage (f) Hoops (g) Livingroom (h) Staircase

Fig. 5. Challenging images from the Middlebury 2014 benchmark. (a)-(e) are from the training dataset and (f)-(h) are from the test dataset. Frequently
mismatched regions are marked with red rectangles. Here, the left and right sides of PianoL have different lighting conditions, and Playroom has a
reflective region at the top-right of the image. The remaining datasets contain largely homogeneous regions.

(a) Sensitivity to λaps (b) Sensitivity to λper (c) Sensitivity to zk (scalar) (d) Sensitivity to zk (plane)

Fig. 6. Sensitivity analysis. Each figure shows bad pixel rates resulting from changing for parameters.

ing costs with multiple box filters. In addition, it was interest-
ing to see that there is no method that employ an end-to-end
network for the Middlebury benchmark among top-performing
methods; most of the state-of-the-art methods utilize MC-CNN
(Z̆bontar and LeCun (2016)) to compute initial matching costs.
To find a reason for this, we evaluated the performance of
HybridCNN-CRF (Knöbelreiter et al. (2017)) which computes
disparity maps through an end-to-end network. As shown in
Table 1, their results show poorer results compared to other
methos that utilize MC-CNN to compute matching costs. This
is because the Middlebury dataset contains high-resolution im-
ages captured at diverse view points, training an end-to-end
network for such a dataset is a difficult task. In other words,
it seems more practical to train a similarity function to deal
with diverse images. Z̆bontar and LeCun (2016) showed that
the trained similarity function using the Middlbury dataset also
shows similar performance for the KITTI dataset, though two
datasets have different characteristics and contents.

For qualitative evaluation, we compared disparity maps for
the selected images from the training and test datasets as shown
in Fig. 7. These results verify the necessity of global plane hy-
potheses in computing disparity maps, where existing methods
frequently failed to estimate correct disparity values in ambigu-
ous regions; these regions are described in Fig. 5.

Sensitivity analysis: The quantitative evaluation in Tab. 1 ver-
ifies that the proposed method is not limited to a specific stereo
matching algorithm. Even the state-of-the-art method can be
further improved with the proposed method. In addition, we
analyzed the sensitivity of two important parameters, λaps and
λper, which were used in Eqs. (7) and (12). We changed the
value of λaps and λper from 1 to 50 in intervals of 1, and com-
puted the bad pixel rate of the disparity maps generated for var-
ious input images. As shown in Fig. 6, the proposed method
shows consistent bad pixel rates as long as the values of λaps
and λper are higher than a certain value, e.g., 10. We also varied
zk for perturbing planes and disparity values where zero on the
x-axis indicates that we did not perturb them. In case of scalar
disparity values, the perturbation slightly affected the quality of
resultant disparity maps and the optimal value was about 6 pix-
els. On the contrary, the perturbation of plane hypotheses sig-
nificantly decreases error rates as long as the range was greater
than or equal to 1 pixel. Here, among 6.6% of average improve-
ment, Eq. (7) improved 1.5%, Eq. (11) improved 4.9%, and the
additional refinment improved 0.2% of errors, when the MBM
method was used to compute initial disparity maps.

In Table 2, we showed the change of bad pixel rates after
removing each term in Eq. (8). Here, the global plane hypothe-
ses affected the quality of disparity maps most significantly, be-
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(a) Results for LocalExp (top) and LocalExp-apap (middle), with their respective error maps in the bottom row.

(b) Results for SGM-Net (top) and SGM-Net-apap (middle), with their respective error maps in the bottom row.

(c) LocalExp (d) SGM-Nets (e) MC-CNN (f) MBM-apap (g) Error maps

Fig. 7. Qualitative evaluation for the Middlebury 2014 dataset. We compared disparity maps for the most challenging images from the Middelbury
benchmark, which are shown in Fig. 5. These images primarily consist of homogeneous and planar regions, which are also typical characteristics of man-
made environments. In particular, among all the benchmark datasets, recent algorithms generate the largest number of errors for the Shelves dataset.
Erroneous pixels are shown in black; in addition, error maps for (c)-(f) are described in (g) with the same boundary colors.
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Table 2. Ablation study. Numbers indicate increase in average bad pixel
rates when each term or procedure is removed.

Pglobal Plocal πnon-plane πoutlier Add. ref.
MBM 4.72 0.44 1.05 1.18 0.22

MC-CNN 4.02 0.02 0.28 1.28 0.11
SGM-Net 1.47 0.002 2.01 0.89 0.17
LocalExp 0.58 0.01 1.57 0.48 0.14

(a) Input stereo pair (b) Our result (c) Error map for (b)

Fig. 8. Results for the Classroom2E dataset. The proposed method shows
a large number of errors (especially in chair regions), because these pixels
were classified as outliers and then post-processed through hole-filling.

cause failure cases of existing algorithms usually occurr in large
homogeneous regions. The improvement tends to decrease as
the quality of input increases as the quality of input increases,
in this case, the non-plane term becomes more important. Lo-
cal plane hypotheses were meaningful when the input image
contains a large amount of errors, otherwise, local plane hy-
potheses were assigned to a small number of pixels. Moreover,
we showed the increase in bad pixel rates after removing ad-
ditional post-processng steps that were applied after the plane
perturbation step.

Failure case analysis: The proposed method showed the high-
est error rate when processing the Classroom2E dataset, in
which input images were taken under different exposures as
shown in Fig. 10(a). Therefore, the matching costs for this im-
age were higher than for the other images. Consequently, many
pixels in chair regions were labeled as outliers, including cor-
rect initial disparity values. Because we refine outlier pixels
through the hole filling technique, the disparity values of these
pixels were interpolated from neighboring pixels. As shown in
the right-bottom region, many pixels in the chair region were
erased and filled with incorrect disparity values. Increasing the
value of γp can prevent this problem, but we used the same
parameters to ensure a fair comparison. However, similar phe-
nomenon did not occur with other images.

Time complexity analysis: On average, the proposed method
took 120.1 seconds to compute half-resolution disparity maps,
excluding the computation of per-pixel matching costs. We pro-
vide a detailed description of running time for the Playtable
dataset in Table 3 in Table 3. Here, essential procedures took
approximately 50 seconds, including three energy minimiza-
tion procedures that were written in C++. The overhead in-
cludes memory allocation, RANSAC, likelihood computation,
etc., which were written in MATLAB. We ran this test on a PC
with 3.5GHz CPU and 16.0GB RAM.

Table 3. Time complexity analysis for Playtable image (926×1360 with 145
disparity levels). We used MBM to compute the initial disparity map.
Initial clustering Eq. (1) Eq. (7) Eq. (11) Refine Overhead All
5.20 1.06 4.27 26.59 14.03 2.54 61.78 107.7

Table 4. Quantitative evaluation for the KITTI 2015 test dataset. Algo-
rithms are sorted in ascending order of D1-bg errors. SGM Hirschmüller
(2008) is the result of our implementation.

D1-bg D1-fg D1-All
PSM-Net 1.71 % 4.31 % 2.14 %

PSM-Net-apap 1.83 % 4.71 % 2.30 %
MC-CNN-acrt 2.89 % 8.88 % 3.89 %

Displets v2 3.00 % 5.56 % 3.43 %
3DMST 3.36 % 13.03 % 4.97 %

SGM-apap 3.66 % 12.20 % 5.08 %
Content-CNN 3.73 % 8.58 % 4.54 %

SPS-St 3.84 % 12.67 % 5.31 %
SGM 4.11 % 15.29 % 5.97 %

DispNetC 4.32 % 4.41 % 4.34 %

(a) 23rd test frame (b) 50th test frame

Fig. 9. A qualitative comparison. Left input images, intial disparity maps
(SGM), and our results are shown from the top. Frequently mismatched
regions are marked with rectangles.

4.2. KITTI 2015 benchmark
We evaluated the proposed method using the KITTI 2015

dataset which is captured in various driving environments.
We selected a popularly used algorithm, semi-global matching
(SGM) of Hirschmüller (2008), and a state-of-the-art method,
a pyramid stereo matching network (PSM-Net) of Chang and
Chen (2018) to compute initial disparity maps. Moreover, we
used MC-CNN to compute similarity between patches.

Figure 9 compares disparity maps obtained in challenging
scenarios e.g., when the pixels are saturated owing to reflected
sunlight or darkened because of low dynamic range. In these
cases, the proposed method effectively recovered mismatched
pixels, with the aid of global plane hypotheses. Otherwise, the
improvement was negligible because most pixels were matched
correctly through the SGM method. Quantitatively, the aver-
age improvement was approximately 0.5% and 0.9% for back-
ground and all regions, respectively, as shown in Table 4. Fur-
thermore, when the highly accurate disparity maps are given as
input, i.e. more than 98% pixels are correctly matched, most
pixels do not change thier disparity values after applying the
proposed method. Although the average bad pixel rate in-
creased for the PSM-Net, nearly half of the images, 98 out of
200, were improved slightly, when the same experiment was
carried out using the training dataset.

Failure case analysis: The proposed method does not always
improve the quality of disparity maps, especially when a glossy
or transparent surface is presented in the scene. For example,
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(a) 7th test frame (b) 51th test frame

Fig. 10. Failure cases for the KITTI 2015 benchmark. Left input images,
intial disparity maps (PSM-Net), and our results are shown from the top.
Degraged regions are regions are marked with rectangles.

in Fig. 9(b), mismatched pixels in the car region remain un-
changed after applying the proposed method. Moreover, if an
input disparity map has accurate disparity values in these re-
gions, the proposed method can turn correct disparity values
into errors as shown in Fig. 10(a). One reason for this is because
of the lack of training data for glossy and transparent pixels,
which is also difficult to acquire ground truth disparity labels.
We observed one more case of quality degradation from images
capturing a high-contrast scene, e.g. at the end of a tunnel, as
shown in Fig. 10(b). The proposed method tends to fluctuate
disparity values in homogeneous regions, as the signal-to-noise
ratio decreases.

5. Conclusion

We have presented a stereo matching algorithm designed for
man-made environments such as indoor scenes and driving en-
vironments. After computing an initial disparity map, we found
local and global plane hypotheses to exploit them, in order to
recover accurate structures in highly ambiguous regions, e.g.,
walls and roads. The key idea was to avoid the oversimplifi-
cation problem by employing two additional labels (non-plane
and outlier) in the energy minimization framework. We demon-
strated that the proposed method effectively handles largely am-
biguous regions where existing stereo algorithms fail to esti-
mate correct depth maps.
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Knöbelreiter, P., Reinbacher, C., Shekhovtsov, A., Pock, T., 2017. End-to-end



12

training of hybrid CNN-CRF models for stereo, in: IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), IEEE Computer Society. pp. 1456–
1465.

Kolmogorov, V., Rother, C., 2007. Minimizing non-submodular functions with
graph cuts - a review. IEEE Trans. on Pattern Analysis and Machine Intelli-
gence 29.

Lee, Y., Park, M., Hwang, Y., Shin, Y., Kyung, C., 2018. Memory-efficient
parametric semiglobal matching. IEEE Signal Processing Letters 25, 194–
198. doi:10.1109/LSP.2017.2778306.

Li, L., Yu, X., Zhang, S., Zhao, X., Zhang, L., 2017a. 3d cost aggregation with
multiple minimum spanning trees for stereo matching. Applied Optics 56,
3411–3420.

Li, L., Zhang, S., Yu, X., Zhang, L., 2017b. Pmsc: Patchmatch-based superpixel
cut for accurate stereo matching. IEEE Transactions on Circuits and Systems
for Video Technology PP, 1–1.

Li, Y., Min, D., Brown, M.S., Do, M.N., Lu, J., 2015. Spm-bp: Sped-up patch-
match belief propagation for continuous mrfs, in: IEEE International Con-
ference on Computer Vision (ICCV).

Liang, Z., Feng, Y., Guo, Y., Liu, H., 2018. Learning for disparity estimation
through feature constancy, in: IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

Luo, W., Schwing, A., Urtasun, R., 2016. Efficient deep learning for stereo
matching, in: IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).
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Wang, X., Westling, P., 2014. High-resolution stereo datasets with subpixel-
accurate ground truth, in: Proc. of German Conference on Pattern Recogni-
tion (GCPR), pp. 31–42.

Schindler, G., Dellaert, F., 2004. Atlanta world: an expectation maximization
framework for simultaneous low-level edge grouping and camera calibration
in complex man-made environments, in: IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR).

Seki, A., Pollefeys, M., 2017. Sgm-nets: Semi-global matching with neu-
ral networks, in: IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).

Sinha, S.N., Scharstein, D., Szeliski, R., 2014. Efficient high-resolution stereo
matching using local plane sweeps, in: IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR).

Straub, J., Rosman, G., Freifeld, O., Leonard, J.J., Fisher III, J.W., 2014. A
Mixture of Manhattan Frames: Beyond the Manhattan World, in: IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR).

Sun, J., yeung Shum, H., ning Zheng, N., 2003. Stereo matching using belief
propagation, pp. 787–800.

Taniai, T., Matsushita, Y., Sato, Y., Naemura, T., 2017. Continuous 3d label
stereo matching using local expansion moves. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence , 1–1doi:10.1109/tpami.2017.
2766072.

Wang, Z.F., Zheng, Z.G., 2008. A region based stereo matching algorithm using
cooperative optimization, in: IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 1–8. doi:10.1109/CVPR.2008.4587456.

Woodford, O., Torr, P., Reid, I., Fitzgibbon, A., 2009. Global stereo reconstruc-
tion under second-order smoothness priors. IEEE Trans. on Pattern Analysis
and Machine Intelligence 31, 2115–2128.

Yamaguchi, K., McAllester, D., Urtasun, R., 2014. Efficient joint segmentation,
occlusion labeling, stereo and flow estimation, in: European Conference on

Computer Vision (ECCV).
Z̆bontar, J., LeCun, Y., 2015. Computing the stereo matching cost with a con-

volutional neural network, in: IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

Z̆bontar, J., LeCun, Y., 2016. Stereo matching by training a convolutional neu-
ral network to compare image patches. Journal of Machine Learning Re-
search 17, 1–32.

Zhang, C., Li, Z., Cai, R., Chao, H., Rui, Y., 2014a. As-rigid-as-possible stereo
under second order smoothness priors, in: European Conference on Com-
puter Vision (ECCV), pp. 112–126.

Zhang, C., Li, Z., Cheng, Y., Cai, R., Chao, H., Rui, Y., 2015. Meshstereo:
A global stereo model with mesh alignment regularization for view interpo-
lation, in: 2015 IEEE International Conference on Computer Vision, ICCV
2015, Santiago, Chile, December 7-13, 2015, pp. 2057–2065. URL: https:
//doi.org/10.1109/ICCV.2015.238, doi:10.1109/ICCV.2015.238.

Zhang, Q., Xu, L., Jia, J., 2014b. 100+ times faster weghted median filter, in:
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).


