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Abstract
Event cameras have numerous advantages over traditional cameras, such as low latency, high temporal resolution, and high
dynamic range (HDR). We initially investigate the potential of creating intensity images/videos from an adjustable portion of
the event data stream via event-based conditional generative adversarial networks (cGANs). Using the proposed framework,
we further show the versatility of our method in directly handling similar supervised tasks, such as optical flow and depth
prediction. Stacks of space-time coordinates of events are used as the inputs while the proposed framework is trained to
predict either the intensity images, optical flows, or depth outputs according to the target task. We further demonstrate the
unique capability of our approach in generatingHDR images even under extreme illumination conditions, creating non-blurred
images under rapid motion, and generating very high frame rate videos up to the temporal resolution of event cameras. The
proposed framework is evaluated using a publicly available real-world dataset and a synthetic dataset we prepared by utilizing
an event camera simulator.

Keywords Event camera · Conditional generative adversarial network · Image and video reconstruction · High dynamic
range · High frame rate · Optical flow · Depth

1 Introduction

Event cameras are bio-inspired vision sensors that mimic
the human eye in receiving visual information (Lichtsteiner
et al. 2008). Whereas traditional cameras transmit intensity
frames at a fixed rate, event cameras transmit the changes
in intensity at the time of the changes, in the form of asyn-
chronous events that deliver the space-time coordinates of
the intensity changes. It has been stated that event cameras,
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in principle, can transfer all the information needed to recon-
struct an image or a full video stream (Rebecq et al. 2017;
Bardow et al. 2016; Reinbacher et al. 2016). However, this
claim has never been thoroughly substantiated. Motivated by
the recent advances in deep learning in image reconstruction
and translation, we initially address the problem of generat-
ing intensity images or videos from an adjustable portion of
the event data stream via camera-based conditional genera-
tive adversarial networks (cGANs) (Isola et al. 2017). Using
the proposed framework, we further investigate its potential
for generating optical flow and depth images from events.

Our method follows end-to-end supervised learning and
accomplishes the target task by flexibly varying the training
data. Furthermore, our method can generate high-frame-rate
and high-dynamic-range (HDR) videos without any motion
blur, solely from event data. To the best of our knowledge,
our work is one of the first attempts to generate high-quality,
non-blurry, high-frame-rate, HDR images and videos from
pure events, even under fast camera or scene movements
or extreme illumination conditions. Although optical flow
and depth can also be synthesized in this manner, we focus
more on generating intensity images/videos. This is because
(1) they naturally include more gradient information and
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Fig. 1 Recovery of intensity images solely from event data. We can
either reconstruct intensity images/videos with the same details as those
of an active pixel sensor (APS) or reconstruct further details that theAPS
cannot reach. This is obtained by training either with (w/) the events in
absolute black or white regions or without (w/o) such events. Excessive
constructed areas can be found in the top row near the person’s leg, in
the areas under the table in the second row, or in the details inside the
windows of the last row. The event stacks are visualized as pseudo-color
images for reference throughout this paper

also vary spatially within an image or temporally among the
sequence of images and (2) motion blur and sharpness are
not highly critical features in optical flowor depth estimation.
For these reasons, we first fully focus on data preparation for
the intensity image/video generation. Then, we describe the
event stacking details and network architecture. Finally, we
show the usefulness of our method in direct depth and optical
flow generation (Fig. 1).

We first propose an event-based image translation frame-
work that generates quality images from events better than
those generated by active pixel sensor (APS) frames andother
previousmethods. To feed events to the proposed framework,
we also propose two novel event stacking methods: stacking
based on time (SBT) and stacking based on the number of
events (SBN). In particular, we designed these methods by
considering how event streams are processed. In this way,
we can obtain high-frame-rate andHDR representationswith
no motion blur, which, in contrast, is impossible for normal
cameras.

It turns out that it is possible to generate a video with up
to 1 million frames per second (FPS) in terms of the recon-
struction frequency using the proposed stacking methods. It
should be noted that the differences between two consecutive
frames may not be quite visible in a high-frame-rate video
reconstruction setting. This is because the two consecutive
event stacks used for reconstructing these images will only
have one single event different between them. Therefore, in
practical applications, at least a few hundred events should
be different. Furthermore, this is inherently different from a
high-speed camera with 1 million FPS, which can capture all
the motion happening during 1 μs.

This paper is an extended version of our previous work
(Wang et al. 2019) and contains additional parts including the
investigation of different data terms, numerical comparisons
withmore recentmethods, newexperiments on temporal con-
sistency, and the possibility of extending thework using color
event cameras. Furthermore, we show the versatility of the
proposed framework in directly estimating depth and opti-
cal flow without the need to first reconstruct the intensity
images. Furthermore, to verify the robustness of the frame-
work, we conducted intensive experiments for its evaluation
and comparison with other methods using a publicly avail-
able real-world dataset captured under real-world indoor,
outdoor, and driving conditions (Bardow et al. 2016; Mueg-
gler et al. 2017; Zhu et al. 2018), together with a simulated
event dataset we prepared using an event camera simulator
(Rebecq et al. 2018).

2 RelatedWorks

Early attempts to reconstruct intensity images involved sta-
tistical methods such as interconnected maps (Cook et al.
2011), probabilistic filters (Kim et al. 2008), or patch-based
sparse dictionaries (Barua et al. 2016). Higher quality results
were obtained by utilizing regularization terms (Bardowet al.
2016) in which the intensity image and the motion field are
jointly estimated for genericmotion using a convex optimiza-
tion scheme.

Reinbacher et al. (2016) introduced a variational denois-
ing framework that iteratively filters incoming events. They
guided the events through a manifold regarding their times-
tamps to reconstruct the image. Compared with the method
of Bardow et al. (2016), their method yields more grayscale
variations in untextured areas and recovers more details, and
their graphics processing unit (GPU)-based algorithm can
be executed in real time. Measurements and simulations on
event cameras with RGBW color filters were proposed by
Moeys et al. (2017). They first presented a naive method
that requires the initial APS image from the event camera to
be updated with the incoming events and then an iterative
scheme creates a regularized image by solving the Poisson
equation about the divergence of the intensity image, which
produces better outputs than those of the naive method.

Following the trend in deep learning-based solutions,
event-based vision has also experienced many success sto-
ries. A hybrid intensity and event fusion method proposed
in Shedligeri et al. (2018) partially utilizes deep learning to
obtain better intensity predictions. However, it is not at par
with the most recent approaches proposed in Wang et al.
(2019); Rebecq et al. (2019), where relatively realistic out-
puts were synthesized in challenging fast movements or
HDR scenes using pure events. An experimental compar-
ison between these two methods is provided in Sect. 4.4.
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Fig. 2 The event stream and construction of the stacks by SBT and
SBN. Two main color tuples of (red(+) and blue(-)) and (green(+) and
cyan(-)) express the event polarity (plus orminus) throughout this paper.
In the 3D view, two types of stacking (SBT on the left and SBN on the
right) are shown using the yellow highlighted time. The 3D view fol-

lowed by its side view is color coded with (red and blue) and (green and
cyan) periodically (every 5000 events) for better visualization. All the
images and plotted data are from the “hdr_boxes” sequence ofMueggler
et al. (2017) (Color figure online)

Zhu et al. (2018) introduced an unsupervised method for
optical flow estimation using the APS frames as a supervi-
sory signal in the training phase. They obtained better results
by changing their event representation while using extra
loss functions on the motion blur and stereo similarity (Zhu
et al. 2019). In another self-supervised method, evenly cas-
caded networks are utilized for dense depth and optical flow
predictions (Ye et al. 2018).Kimet al. (2016) proposed a real-
time three-dimensional (3D) reconstruction method that can
recover the six-degrees-of-freedom (6DoF) motion together
with depth and intensity reconstruction through probabilis-
tic filters. However, in their method, depth estimation relies
on the intensity image reconstruction. A multi-view stereo
scheme for estimating 3D structures from an event camera
under a known trajectory was presented in Rebecq et al.
(2018). The authors introduced a space-sweep method to
directly perform 3D reconstruction by utilizing the sparsity
of the event stream.A unified framework to calculatemotion,
depth, and optical flowwas presented inGallego et al. (2018);
it minimizes the objective function by aligning the trajecto-
ries of the event points in three dimensions over a short time
interval and maximizes the contrast of the image of warped
events. The depth is estimated by selecting regions with a
large variance over the disparity space image.

Moreover, event data alone or accompanied with APS
images have also been used in training convolutional neural
networks for other tasks such as steering prediction (Moeys
et al. 2016), self-driving cars (Binas et al. 2017; Maqueda

et al. 2018), 6DoF pose relocalization [4], or supervised
object detection (Chen 2018). A more detailed survey on
event-based vision is available in Gallego et al. (2019). Con-
ditional GANs, on the other hand, have been used in many
applications such as image prediction from a normal map
(Wang and Gupta 2016), future frame prediction (Math-
ieu et al. 2015), image generation from sparse annotations
(Karacan et al. 2016), or style transfer (Isola et al. 2017;
Atapour-Abarghouei and Breckon 2018; Ledig et al. 2017;
Li and Wand 2016; Zhu et al. 2017). The key strength of
cGANs is that there is no need to tailor the loss function
in regard to the given specific tasks, and they can generally
adapt their own learned loss to the data domain where they
are trained. Actually, there is no qualitative study showing
the effectiveness of cGANs on event data, and, therefore, we
investigate this potential in this paper.

3 ProposedMethod

In this section, we describe the proposed framework for
reconstructing HDR and non-blurry images and videos from
events. To this end, we exploit currently available deep learn-
ing based models, such as cGANs, as potential solutions for
event-based intensity image reconstruction.

However, since event data are quite different from conven-
tional frame-based images, how to feed event data as inputs
to a deep neural network remains a challenge. Hence, in the
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followingSect. 3.1,wefirst propose two event stackingmeth-
ods that can provide off-the-shelf inputs to neural networks.
Then, in Sect. 3.2, we will describe the proposed novel yet
simple cGAN framework.

3.1 Event Stacking

In an event camera, each event e is represented as a tuple
(u, v, t, p), where u and v are the pixel coordinates, t is the
timestamp of the event, and p = ±1 is the polarity of the
event, which is the sign of the brightness change (p = 0 for
no event). These events are shown as a streamon the left-hand
side of Fig. 2. On the basis of the frame rate of the intensity
camera, we synchronize the APS images and asynchronous
events in between two consecutive APS frames.

To feed the event data input to the network, we require new
representations of the event data. One simple way to do this
is to form the 3D event volume as p(u, v, t) for some time
duration, ensuring enough event data for the image recon-
struction. We denote the temporal resolution of an event
camera by δt , the time duration by td , and the size of the
3D volume by (w, h, n), where w and h represent the spatial
resolution of an event camera and n = td/δt . This is equiv-
alent to having an n-channel image input for the network.

This representation preserves all the information about the
events. However, the problem is that the number of channels
is very large. For example, when td is set to 10 ms, then n is
about 10K, which is extraordinarily large since the temporal
resolution of an event camera is approximately 1μs. For this
reason, we construct the 3D event volume with a small n by
forming each channel via merging and stacking the events
within a small time interval.

Event stacking is the initial step to make a tensor-like
representation suitable for deep learning-based architectures,
and it can be done in differentways, but, usually, the temporal
information of the event is necessarily sacrificed in return.

3.1.1 Stacking Based on Time (SBT)

In this approach, the streaming events in between the time
references of two consecutive intensity images (APS) of the
event camera, denoted as Δt , are merged. However, not all
events are merged into a single frame. Instead, the time
duration of the event stream is divided into n equal-scale por-
tions, and then n grayscale frames, Sip(u, v), i = 1, 2, .., n,
are formed by merging the events in each time interval of
[ (i−1)Δt

n , iΔt
n ]. Sip(u, v) is the sum of the polarity (p) values

at (u, v). These n grayscale frames are concatenated again to
form one stack Sp(u, v, i) = Sip(u, v), i = 1, 2, .., n, which
is fed to the network as the input. As mentioned earlier, this
stacking method loses the time information of events within
the time interval Δt

n . However, the stack itself, as a sequence
of frames from one to n, still holds the temporal information

to some extent. Therefore, a larger n can keep more temporal
information.

Figure 2 illustrates how to merge and stack the events.
When n = 3 (i.elet@tokeneonedot, frames FA, FB , and FC
are stacked into one stack), the stack can be visualized as a
pseudo-color frame, as shown in the left-hand side of Fig. 2
above the APS image. Based on the time shown at the event
manifold in the middle of Fig. 2, starting from zero on the 3D
view, the location of the APS image is around the location of
the third red rectangle near 0.03 s (the frame rate of the APS
image is 33 FPS).

3.1.2 Stacking Based on the Number of Events (SBN)

Unfortunately, SBT has an intrinsic limitation that comes
from the event camera, which is the lack of events when there
is no movement of the scene or the camera. When the event
data within the time interval are not enough for the image
reconstruction, it is inevitably difficult to obtain good HDR
images. This is the case for the fourth and fifth frames of
the event stream at the left-hand side of Fig. 2. Furthermore,
another flaw comes from the case of having too many events
in one time frame as in the third time frame.

SBN coincides more with the nature of an event camera,
which is being asynchronous to time, and can overcome the
aforementioned limitations of SBT. In this method, a frame
is formed by merging the events according to the number of
incoming events, as illustrated in Fig. 2. The first Ne events
are merged into frame 1 and the next Ne events into frame
2, and this is continued up to frame n to create one stack of
n frames. Then, this n-frame stack containing nNe events in
total is used as an input to the network.

This method guarantees enough rich event data to recon-
struct images depending on the Ne value. FE , FF , FG , and
FH in Fig. 2 are the frames corresponding to the different
numbers of events, i.elet@tokeneonedot, Ne, 2Ne, 3Ne, and
4Ne, respectively. Since we count the total number of events
per stack with time, we can adaptively adjust the number of
events in each frame and also in one stack. In the special case,
where several positive or negative events land on the same
pixel location in a stack, only the latest event is considered.
This means that all previous events on that location will not
be considered in the stack. Therefore, choosing the correct
number of events per stack is important, although the network
can, to some degree, handle excessive or missing events, as
shown in Fig. 9. Further details and ablation studies on SBN
and SBT are available in Wang et al. (2019).

When the events in the time interval [i−Δt, i] are used for
one input stack for the image I (i) in a video, the next input
stack for the image I (i + ts) in the video can be constructed
by using the events in the time interval [i − Δt ′, i + ts] (for
SBT Δt ′ = Δt − ts), with the time shift ts . Then, the frame
rate of the output video becomes 1

ts
. It is also worth noting
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that two stacks have a large time overlap [i − Δt ′, i] with
the duration Δt ′. If Δt ′ >> ts , the temporal consistency is
naturally enforced for the nearby frames.

3.1.3 Further Event Representations

Although many new event representations have been pro-
posed, we show that our network can reconstruct intensity
images and perform depth and optical flow estimations
from the proposed simple yet effective stacking methods:
SBN and SBT. Employing further event stacking algo-
rithms, e.glet@tokeneonedot, (Zhu et al. 2018, 2019), might
be straightforward; however, slight changes are explicitly
required to the first few layers of our network depending
on the chosen event representation. We summarize the simi-
larities and differences of our event stacking algorithm to the
event representations used in E2VID (Rebecq et al. 2019) or
depth and optical flow estimations (Zhu et al. 2018, 2019),
as shown in Table 1. We compare the dimensions of each
event representation, and describe its characteristics in keep-
ing temporal and polarity information.

The per polarity summation (Zhu et al. 2018) uses a
4×H×W tensor representation,where H andW are the input
height and width of the sensors, respectively. They sum all
the events based on their polarity into two separate channels
and keep the latest timestamp and report it in the next two
channels based on the event polarity.

The dimensions of our event stack is C×H×W , where
C is the number of channels for each stack. We mainly use
C = 3 in our experiments as it can be easily visualized, saved,
or concatenated as a 3 channel RGB image but are not limited
to it. The number of channels C , can be considered similar
to the notation of bins (B) in a spatio-temporal voxel grid
with B×H×W dimensions (Zhu et al. 2019). The number
of such bins (B) or channels (C) can be chosen arbitrarily. For
instance, E2Vid (Rebecq et al. 2019) uses a spatio-temporal
voxel grid with B=10 bins, and our method uses C=3 chan-
nels.

Like the voxel grids, we also preserve the temporal infor-
mation by using multiple channels, which can reveal the
temporal relation and flow between the events in the channels
as visualized in Fig. 15. Unlike the voxel grid, which discards
the event polarity by summing them, we keep the polarities
of the latest event per pixel. However, previous polarity infor-
mation might be replaced by newer events landing in a pixel.

3.2 Network Architectures

In this section, we describe the proposed generator and dis-
criminator structures inspired by the works in Li and Wand
(2016); Yi et al. (2017). Details of the architectures including
the size of each layer can be found in Figs. 3 and 4.

3.2.1 Generator Architecture

The core of the event-to-image translation is how to map a
sparse event input to a dense HDR output with details, while
sharing the same structural image features such as edges,
corners, and blobs. The encoder-decoder network is the most
used network for image-to-image translation tasks. The input
is continuously downsampled through the network and then
upsampled back to obtain the translated result. Since, in the
event-to-image translation problem, there is a huge amount
of important high-frequency information from the event data
passing through the network, it is likely to lose detailed fea-
tures of the events during this process and induce noise to the
outputs. For that reason, we consider the similar approaches
proposed in Isola et al. (2017), wherein we further add skip
connections to the U-net (Ronneberger et al. 2015) network
structure in Reinbacher et al. (2016).

In Figs. 3 and 4, each gray block presents a convolutional
layer where the first two numbers show the filter size and
the last number is the number of filters. Each box includes
a batch norm followed by a leaky rectified linear unit layer,
with a slope of 0.2. All convolutions use 4 × 4 spatial filters
with a stride of 2. The decoder gets upsampled by a factor
of 2, and, in return, the encoder and the discriminator get
downsampled also by a factor of 2. In the last layer of the
decoder, a convolution is applied tomap the number of output
channels back to 1 followed by a tanh function. The first three
layers of the decoder also have a dropout layer with a rate
of 50%. The networks were all initialized from a Gaussian
distribution with a mean of 0 and a standard deviation of 0.02
and trained from scratch. We utilized the Adam optimizer
(Kingma and Ba 2015), with a learning rate of 0.0002 and
momentum parameters of β1 = 0.5 and β2 = 0.999. The
networks were trained with a batch size of 10 for 150 epochs.

3.2.2 Discriminator Architecture

Our discriminator can be considered as a method for min-
imizing the style transfer loss between the events and the
intensity images. Mathematically, the objective function is
defined as

LcGAN (G, D) = Ee,g[log D(e, g)]
+Ee,ε[log (1 − D(e,G(e, ε)))]. (1)

where e indicates the original event, g indicates the target
image (namely, the ground truth (GT)), and ε indicates the
random noise vector. G tries to produce the output G(e, ε),
which cannot be distinguished from theGT image g, whereas
the discriminator D is adversarially trained to detect the
‘fake’ image of the generator. Here, for the regularization,
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Table 1 Comparing different event representations used for intensity (Rebecq et al. 2019), depth or optical flow estimation methods (Zhu et al.
2018, 2019), where H,W,C and B are the input height, input width, number of designated channels and number of designated bins, respectively

Representation Dimensions Temporal information Description

Per polarity sum (Zhu et al. 2018) 4×H×W Discarded Sum of each polarity

Voxel grid (Zhu et al. 2019; Rebecq et al. 2019) B×H×W Kept (B bins) Voxel of sum of events

SBN, SBT C×H×W Kept (C channels) latest event at Ne/C , Δt/C

Fig. 3 The generator network: A U-net architecture Ronneberger et al.
(2015); Isola et al. (2017) (with skip connections) that takes an input
with a dimension of 256×256×n (n = 3 for this example) togetherwith
a random noise vector ε. The gray boxes correspond to multi-channel

feature maps where the number of channels is denoted inside each box.
The first two numbers indicate the filter sizes followed by the number
of filters

Fig. 4 The proposed framework with the generator and discrimina-
tor networks. Our discriminator network is similar to PatchGAN (Yi
et al. 2017), which takes two images (the original APS image and the
image generated by the generator from the events). The discriminator

takes both the input events and the generated image and discriminates
whether the generated image is from the ground-truth APS images or
from a generated image

the L1 norm is used to reduce the blurring and is defined as

LL1(G) = Ee,g,ε[‖g − G(e, ε)‖1]. (2)

This L1 norm is aimed to make the discriminator focus more
on the high-frequency structure of the images generated from
the events. Eventually, the objective is to estimate the total

loss from the event-to-image translation as

G∗ = argmin
G

max
D

[LcGAN (G, D) + λLL1(G)]. (3)

where λ is a parameter for adjusting the learning rate. With
the noise ε, the network could learn a mapping from event
e and ε → g, which could match the distribution based on
events and help to produce more deterministic outputs.
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3.3 Dataset Preparation

Following our main goal of having a versatile framework
for synthesizing intensity images, optical flow, or depth, we
prepared event stacks with the corresponding GT APS frame
images, which were different depending on the task to learn.

3.3.1 Intensity Image Dataset

For the intensity image reconstruction, our training datasets
were mainly prepared from three different sources. We cre-
ated the first dataset by using the captured sequences in
Mueggler et al. (2017), where many real-world scenes are
included. We prepared the second dataset ourselves for vari-
ous training and test purposes, which we have made publicly
available for broader use of the research community. 1 Both
of these datasets were captured using a DAVIS 240C cam-
era and contain many indoor and outdoor scenes. The third
dataset was generated from synthesized events by utilizing
ESIM (Rebecq et al. 2018), an open-source event camera
simulator. The real-world intensity data-set contains many
indoor and outdoor scenes captured with various rotations
and translations of the event camera. Our training data con-
sisted of pairs of stacked events, as explained in Sect. 3.1,
togetherwith theAPS frames fromboth the real-world scenes
and the GT frames generated from ESIM.

Further evaluations of the intensity image reconstruction
were performed on the multi-vehicle stereo event camera
dataset (MVSEC) sequences (Zhu et al. 2018) together with
the parts of the real-world dataset that were not used in the
training. The intensity images from the MVSEC test set can
be synched with the GT depth and optical flow reconstruc-
tions aswell. A sample event stack together with the intensity
image from this dataset is presented in the bottom row of Fig
18(b). We used the real-world dataset for training the net-
work. Hence, we carefully pre-processed the training data
to prevent the proposed network from learning the unwanted
properties of theAPS frames.APS frames suffer frommotion
blur under rapid motion and have a limited dynamic range,
resulting in loss of details, as shown in Fig. 1. Therefore,
directly using the real APS frames as the GT is not a proper
way for training the network since our goal is to produceHDR
images without motion blur by fully exploiting the advan-
tages of event cameras. For that reason, the events relevant
to the black andwhite regions of the training data are removed
from the input to make the network learn to generate HDR
images from events.

More specifically, when making event stacks and APS
image pairs, if the intensity of a specific pixel in the APS
frame is equal to or lower than our low threshold (which we

1 Our dataset is publicly available at https://github.com/wl082013/
ESIM_dataset.

set to 1 for our experiments), we consider it to be an extreme
case of lighting. Therefore, any event in that pixel location
will be removed from the paired event stack. In contrast,
if the pixel value is greater than our high threshold (which
we set to 254 in our experiments), all events landing in that
pixel location will not be considered in its dual-event stack.
Furthermore, the APS images are classified as blurred and
non-blurred through manual inspection. If the APS frame
is blurry, its joint event stack with that APS frame will not
be used for the training. However, human inspection is not
our sole reference for selecting good images. We further
use the Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE) (Mittal et al. 2012) to filter out lower qual-
ity images with relatively low scores. Internally, BRISQUE
utilizes normalized luminance coefficients to quantify the
naturalness of images. We used the public available imple-
mentation of BRISQUE fromOpenCV 2 [54]. The simulated
sequences aremainly generated fromESIM,where events are
produced while a virtual camera moves freely in all direc-
tions to capture different scenes in the given images. Since
the events and APS images are generated from a controlled
simulation environment, theAPS frames are counted directly
as the GT for the image reconstruction. Therefore, the refine-
ment of the training data as mentioned above is not required
for simulated datasets.

3.3.2 Depth and Optical Flow Datasets

We mainly followed the procedure in the previous sec-
tion and used two series of data for estimating the depth and
optical flow. Onewas based on the simulator (ESIM), and the
other was from the real-world sequences captured by a stereo
pair of DAVIS 346B cameras mounted on multiple vehicles
(MVSEC) (Zhu et al. 2018). For the simulated datasets, we
created 15 different nonplanar scenes using computer graph-
ics software. We placed different 3D objects such as cubes,
spheres, and animals on a surface with different textures on
the objects and the floor of the scene. Some samples are
shown in Figs. 5 and 16 of Sect. 5. Using the SBN method,
we created stacks of three channels using 60K events per
stack. Through this process, we created 8500 pairs of event
stacks and optical flow or depth pairs. We set the simulator
parameters such that the rate, optical flow, and depth creation
of the image were all the same and its FPS was 50. The opti-
cal flow was set on the basis of the difference between two
consecutive frames.

TheMVSECdataset contains recorded outputs ofmultiple
sensors, including stereo event cameras, motion capture sys-
tems, and LiDARdepth sensorsmounted onmultiplemoving
vehicles to capture different day/night and indoor/outdoor
scenes. The dataset contains GT depthmaps from the LiDAR

2 imported from OpenCV: cv::quality::QualityBRISQUE.
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(a)

(b)

Fig. 5 a Sample nonplanar scenes used for the simulator depth and
optical flow training using ESIM. The positive (red) and negative (blue)
events being triggered on the 3D scene are shown togetherwith a sample
intensity image from that scene. b Examples of the event stack, inten-
sity image, depth, and optical flow from ESIM and of the real-world
scenes fromMVSEC. The 3D sceneswere visualized using Blender and
the RViz 3D visualization tool (Community 2018), [51] (Color figure
online)

depth sensors where the GT optical flow can be calculated
using the depth map and the GT rotation and translation of
the camera (available in the dataset) (Zhu et al. 2018).

It should be noted that the GT in the dataset sometimes
containsmismatches between the events and the depth,which
can be a source of error in the training process. Since the
flow is generated on the basis of the depth map, it will also
contain artifacts. The network expects that, if it sees visible
events in the input stack, there should be a relation for it
in the paired intensity, depth, or flow. Therefore, following
the intensity reconstruction scheme, we slightly removed the
effect of these artifacts by omitting the extreme training sam-
ples that did not represent a one-to-one presentation of the
events to the depth or intensity.

Furthermore, the car hood was cropped to prevent simi-
lar errors due to the reflection of light on the shiny surface
of the hood. A sample training set is shown in the last row
of Fig. 5. For the real-world dataset on the depth and opti-
cal flow tests, we used the outdoor_day_2 sequence of the
MVSEC dataset (more than 12K frames) and tested it on
the outdoor_day_1 and indoor_flying sequences for both the
depth and the optical flow. Stacking was performed by uti-
lizing SBN, with 60K events and three frames per stack. The
output results are shown in Figs. 17 and 16 of Sect. 5.

4 Experiments on Image Reconstruction

Experiment setting. In this section, we present both the
qualitative and the quantitative results for the event-to-image

reconstruction using the datasets mentioned in Sect. 3.3.1.
Wemainly focus on how the stackingmethods or the network
parameters affect the reconstruction of the intensity images
under different conditions. Meanwhile, we compare our out-
puts with those of the existing methods. Depth and optical
flow will be evaluated separately in the following Sect. 5.
We stacked 60K events to create event images together with
their corresponding APS images on the basis of the precise
timestamps.

We tested our method on both scenes with normal illu-
mination and HDR scenes. From both the real-world and
the simulated datasets, we randomly chose 1K event images
together with their corresponding APS (GT) images.

It isworth noting that, since the real-world dataset does not
include GT images for training and testing, we used its APS
images as the GT for training purposes. However, the APS
images themselves suffer frommotion blur and low dynamic
range. Thus, using the APS images might not be the best
way for training and also for evaluating the results. For this
reason, we prepared the training APS images as described
in Sect. 3.3.1 and evaluated the results (compared the results
with the APS images) using the structured similarity index-
ingmethod (SSIM) and the feature similarity (FSIM)method
(Zhang et al. 2011). On the other hand, to assess the similarity
between the GT and the generated images on the synthetic
datasets, we matched each GT image with the corresponding
reconstructed image with the closest timestamp, as men-
tioned in Scheerlinck et al. (2018). The SSIM, FSIM, and
peak signal-to-noise ratio (PSNR) were adopted to evaluate
the non-HDR scenes and the scenes with high-quality GT
images.

Interestingly, since the proposed method can fully exploit
the advantages of event cameras such as their high temporal
resolution and HDR, it can generate more visually accept-
able HDR images than APS images and very high frame rate
videos, as mentioned in Sect. 3.1, thus greatly increasing the
usefulness of the proposed method. We qualitatively show
the outputs of our approach on the challenging real-world
sequences in Fig. 6.

4.1 SBT vs. SBN

We compared the performances of the two event stacking
methods, i.elet@tokeneonedot, SBT and SBN, on the real-
world intensity datasets. The 17K stacked event images and
the APS image pairs were used for the training, where we set
Δt for SBT to 0.03 s and the number of events in one stack to
60K for SBN (e.glet@tokeneonedot, 20K events per frame
if n=3); the number of frames (n) in one stack was set to 3
for both methods to show the effect of a stacking method.
Note that the given numbers were an approximate number
of events per stack and that, if they were not divisible by the
number of channels (e.glet@tokeneonedot, 5K events with 3
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Fig. 6 Reconstruction of relatively realistic intensity images of real-
world scenes frompure events using our proposedmethod.Wewere able
to reconstruct images with comparable quality to that of APS frames in

multiple scenarios with different camera speed and movements, light-
ing conditions, and number of triggered events in indoor and outdoor
scenes

frames), the greatest integer less than or equal to that division
(floor) was considered.

Table 2 shows the quantitative results of using the SBN
and SBT stacking methods on the real-world dataset. SBN
produced better results in general owing to its asynchronous
behavior to time, as explained in Sect. 3.1. SBN includes
events of the whole scene rather than the latest movements
of a specific time slot, which results in better reconstructed
intensity images. For a qualitative comparison, refer toWang
et al. (2019). However, it should be pointed out that SBN
may be less useful for static background scenes in which a
fast-moving object (e.glet@tokeneonedot, a car) passes by
and consumes all the events considered for a stack. In such
cases, SBT can still recover the background information but
may lose the details of the fast-moving object.

4.2 Evaluation on the Simulated Datasets

In Sect. 4.1, we investigated the performance potential of
our method on different stacking methods. SBN can produce
higher quality outputs than those of SBT, and, therefore, we
used it to stack the events and to show the effectiveness of

Table 2 Quantitative evaluation of SBN and SBT (n = 3) on our
simulated event dataset

PSNR FSIM SSIM

SBN 25.12±3.18 0.88±0.06 0.80±0.12

SBT 22.92±2.92 0.85±0.07 0.75±0.14

SBN quantitatively performed better in all of the metrics

our method on the simulated datasets. Since ESIM produces
noise-free APS images with the corresponding events for a
given image, the APS images can be regarded as the GT, thus
making the quantitative evaluations more feasible. In addi-
tion, we chose the number of channels as n = 3 following
the performance evaluation on the number of events vs. the
number of frames in Wang et al. (2019). The total number of
events in one stack was set to 60K.

The proposed network is usually trained with a fixed num-
ber of events per stack. However, it can also be trained
with multiple events per stack, such that it can be more
robust to a diverse number of input events. Furthermore, once
trained with a specific number of events, the network can
still be used for slightly further or less number of events
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Fig. 7 Qualitative presentation of the effect of changing the number of
a frames per stack and b total number of events per stack.When keeping
the events fixed (30K events) and changing the number of frames from
n = 1 to n = 3 (case a), we can see that n = 3 frames has a better output.
When changing the total number of events per stack to 10K, 30K, 60K,
and 90K while having a fixed number of 3 frames (case b), we can see
that adding more events up to 30–60K improves the quality but adding
more does not really help and might also degrade the quality partially.
The GT together with a zoomed version of the prediction/GT enclosed
by the red box is provided for comparison. The stacking method is SBN

in a stack. To show this feature, we trained our network
using ∼ 5000 events stacked as three frames (∼ 1660 events
per frame) on the real-world event dataset. We then tested
the “HDR_boxes” scene using different numbers of events
stacked (1K, 2.5K, 5K, and 10K events), as shown in the
top rows of Fig. 9. The test results showed that the network
can reconstruct reasonable outputs with different numbers of
events in a stack at the testing phase.

However, too few events force the network to hallucinate
some results on flat locations with fewer events, as shown in
Fig. 9. These hallucinations tend to be from the GAN term,
as mentioned in Sect. 4.3, and they are in the form of high-
frequency outputs such as lines and textures. Providing an
extra number of events at the testing phase does work also,
although it may lead to lower quality outputs. If too many
events are fed to a stack, there is a chance of overwriting
the previous events, which will produce erroneous outputs.
Although the network itself can tolerate an excessive number
of events to some extent, if more events are planned to be
used, it is better to increase the number of frames in each
stack. For our experiments, once the networkwas trainedwith
E events in a stack, the minimum number of events required
to provide acceptable reconstructions for testing should be
in the range of E/2 to a maximum of E × 2 events.

We further show the effect of the number of channels and
events per stack on the quality of the reconstruction in Fig. 7.
In our experiments, we changed multiple factors including
the number of frames per stack (1 and 3) and the total num-
ber of events in each stack (10K, 30K, 60K, and 90K events).
Remarkably, we observed that the performance increased by
increasing the number of events in a stack only if we had
enough frames available to accommodate the extra events
(e.glet@tokeneonedot, n = 3 can include more events); oth-
erwise (e.glet@tokeneonedot, for n = 1), the performance
dropped as more events were added because there is a prob-
ability that newer events will overwrite the previous events.

Figure 10 shows some of our intensity image reconstruc-
tion results. It can be seen in the figure that the reconstructed
intensity images are very close to the GT images. Since there
exists no real-world noise in the events and the training set
covers a wide variety of scenes, the reconstructed images are
more realistic. Furthermore, the camera movements are not
parallel to the scene gradients, which allows changes in the
scene to be sensed and events to be easily triggered. More-
over, some of the APS images are in focus compared with the
real-world reconstructed images, which has a positive impact
on the reconstruction of sharp and realistic images.

4.3 Impact of the Loss Function

In this section, we discuss the results of the systematic
ablation study we conducted on different combinations of
loss functions that affect the quality of reconstructed inten-
sity images. The quantitative results are shown in Table 3,
whereas the qualitative results are shown in Fig. 8. In terms
of PSNR, the L1 norm obtained higher values. However,
we used cGAN + L1 throughout our experiments since it
obtained a better perceptual (LPIPS) score in the ablation
study, as shown in Table 3. A higher PSNR does not always
mean better output quality. It just presents the similarity to
APS images (used as the GT) suffering from noise, motion
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Fig. 8 Effect of the different loss functions on a sample real-world
input. L1 does not preserve the high-frequency details. cGAN+L1 pre-
serves the high-frequency details without adding unwanted artifacts.

Unwanted artifactswere addedwhen the learned perceptual image patch
similarity (LPIPS) function or the combination of cGAN+LPIPS were
utilized

Fig. 9 Stacking different numbers of events as an input stack of three
frames trained with E = 5000 events. Although the algorithm can
create outputs with a very low number of events, empirically, however,
feeding more than E/2 and less than E × 2 events per stack leads to
better output results. Overfeeding with an excessive number of events
does not necessarily enhance the reconstructed outputs

blur, and low dynamic range. For example, a higher PSNR
means that the result with L1 in Fig. 8 is more similar to
the low-quality APS image. Since we aimed to reconstruct
images to make them lookmore realistic and better than APS
images (used as the GT), we did not use L1 but used cGAN+
L1 instead. Moreover, the L1 norm by itself smoothens the
image and averages out the details.

Furthermore, using LPIPS as the loss function gener-
ates slightly better PSNR values; however, in terms of the
LPIPS similarity, it obtainsworse results. Additionally, in our
experiments, the LPIPS loss caused high-frequency artifacts
as a fuzzy pattern, which is not visually pleasing. Adding
the LPIPS loss and the adversarial loss together does not
improve the performance visually or qualitatively,most prob-
ably because themodel cannot converge easily between these
two terms. The effectiveness of LPIPS has been studied in
many image translation and super-resolution methods (Oud-
eraa et al. 2019; Wang et al. 2020). Note that L1 loss is a

Fig. 10 Reconstruction of relatively realistic intensity images of sim-
ulated scenes from pure events using our proposed method without the
presence of real-world noise

pixel-wise loss where each pixel in the generated image is
directly compared with each pixel in the GT image. Using
L1 shows improved performance and convergence. However,
L1 loss may ignore the high-frequency details. The GAN
loss helps generate more realistic images as it predicts the
probability that real images are relatively more realistic than
fake ones. Thus, in our method, using L1 loss and GAN loss
together overcomes the difficulty of only learning percep-
tual quality. Overall, cGAN+L1 showed the best perceptual
performance among the loss terms while producing the most
reasonable image outputs. Therefore, we used it throughout
our experiments and its results unless otherwise explicitly
stated (Figs. 9, 10).

Although ourGAN-basedmethod shows visually pleasing
outputs and has better perceptual quality than that of other
loss terms, it tends to obtain lower PSNR values. We argue
that this is because the most dominant difference between

Table 3 Ablation of the effect
of the standard L1 loss function,
cGAN, LPIPS, and
cGAN+LPIPS on event
reconstruction quality

L1 cGAN+L1 LPIPS cGAN + LPIPS

LPIPS (↓) 0.426 0.395 0.419 0.439

PSNR (↑) 20.84 18.57 18.63 17.12

SSIM (↑) 0.644 0.52 0.51 0.46
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Table 4 Comparison between our event-to-intensity reconstruction method that incorporates GANs (EG) and the E2Vid method using statistical
(SSIM and MSE) and perceptual (LPIPS) metrics

Sequence SSIM (↑) MSE (↓) LPIPS (↓)
E2Vid EG w/ EG w/o E2Vid EG w/ EG w/o E2Vid EG w/ EG w/o

dynamic_6dof 0.50 0.48 0.41 0.08 0.03 0.05 0.43 0.45 0.50

boxes_6dof 0.63 0.45 0.43 0.04 0.03 0.04 0.36 0.48 0.51

poster_6dof 0.68 0.61 0.57 0.04 0.01 0.02 0.32 0.42 0.45

shapes_6dof 0.44 0.56 0.48 0.10 0.03 0.05 0.53 0.51 0.58

office_zigzag 0.50 0.67 0.54 0.05 0.01 0.02 0.44 0.36 0.43

slider_depth 0.61 0.54 0.47 0.06 0.02 0.03 0.42 0.42 0.47

calibration 0.52 0.67 0.52 0.04 0.01 0.02 0.47 0.42 0.49

Avg. 0.55 0.57 0.49 0.06 0.02 0.03 0.42 0.43 0.49

We used both of our training settings with (w/) and without (w/o) extreme cases of motion blur and low-dynamic-range locations. Our method
showed better performance in terms of SSIM in three of the sequences and also on average. Although not trained for LPIPS, our method still achieved
comparable LPIPS scores in some of the sequences. MSE might not be a great metric, and all methods were almost comparable in performance.
As expected, “Ours w/” mimics APS frames better than “Ours w/o” using all the metrics. The best performance is bolded, and the runner-up is
underlined

the reconstructed images and the real intensity images is the
high-frequency information, where the reconstructed images
obtained by minimizing the pixel-wise errors lacked high-
frequency details. The simplest way for a discriminator to
distinguish reconstructed images from real intensity images
could be simply by inspecting the presence of high-frequency
components in a given image, and the simplest way for a
generator to fool the discriminator would be to put arbitrary
high-frequency noise into the resulting images.

4.4 Comparison with RelevantWorks

We quantitatively compared our method with the deep learn-
ing based Events-to-Video (E2Vid) method (Rebecq et al.
2019) and further show a qualitative comparison in Fig. 11.
Furthermore, in comparison with previous optimization-
based methods, we predicted the intensity images from the
face, jumping, and ball sequences (Bardow et al. 2016) and
compared them with the results of Munda et al. (2018) and
Bardow et al. (2016) and report them in Table 5.We followed
the convention of comparing with statistical methods using
the BRISQUE score (lower is better) because no GT image
was available for these sequences.

As E2Vid is a concurrent work, we first point out the sim-
ilarities and differences between it and our work. E2Vid is
designed for video reconstruction from events and is quite
similar to our method in different aspects. The main archi-
tecture of both is U-net (Ronneberger et al. 2015) with skip
connections, and they both follow almost the same architec-
tural details in decoding and encoding. As for the differences,
E2Vid uses a recurrent connection to propagate the intensity
information over time since its priority is video reconstruc-
tion. Therefore, the input information is also different in
comparison.

Fig. 11 Visual comparison between our event-to-intensity reconstruc-
tion method and the E2Vid method (Rebecq et al. 2019). Both methods
were able to create high-quality outputs. Unlike E2Vid, our recon-
structed images did not create dark regions, which could be a result
of previous error propagation in their method

However,when looking at the results ofE2Vid,we canfind
faded black or white regions following the video. This could
be due to the propagated error from the recurrent network.
Moreover, the central loss function of these two methods is
based on a learned perceptual image patch similarity (LPIPS)
(Zhang et al. 2018) distance. Instead of finding the normal
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Table 5 Quantitative comparison of our method (EG) with those of Bardow et al. (2016) and Munda et al. (2018)

Sequence Face Jumping Ball

Bardow (Bardow et al. 2016) 22.27±8.81 29.39±7.27 29.37±9.61

Munda (Munda et al. 2018) 27.29±7.27 48.18±6.70 34.98±9.31

EG 14.15±4.22 16.69±4.32 13.37±5.25

The reported numbers are the mean and standard deviation of the BRISQUE measure applied to all reconstructed frames of the sequences. Our
method showed better BRISQUE scores for all sequences

L2 distance between an input image and its GT pair, LPIPS
feeds an input image to another pretrained neural network,
e.glet@tokeneonedot, a VGG net (Simonyan and Zisserman
2015). Then, it calculates the L2 distance between that fea-
ture and the features of the GT obtained in the same manner.
The logic for training with such a criterion is that, if the fea-
tures of the two images are perceptually similar, then, those
two images will also be alike. In contrast, we mainly utilize a
conditional GAN together with the L1 norm to minimize the
distance. To quantitatively relate E2Vid with our method in a
uniform representation, we followed the selected sequences
together with the evaluation metrics: SSIM (higher is better),
mean squared error (MSE; lower is better), and LPIPS (lower
is better). As mentioned previously, these real-world images
suffer from extreme cases of low dynamic range and motion
blur if we consider the APS frames as the GT. To discuss
this aspect, in our comparison, we used two different train-
ing schemes: one is trained with such extreme cases (Ours
w/) and the other one without such samples (Ours w/o). In
extreme cases, the network either learns to blur images in
similar situations or does not consider events in locations
where the dynamic range is low. A sample of such cases is
shown in Fig. 1. It should be noted that E2Vid was trained
on the simulated events only, whereas both of our methods
were trained using our real-world training set mentioned in
Sect. 3.3.

Table 4 compares the performances of these two methods
in multiple real-world scenes. Depending on the sequence,
both of our training methods obtained similar numbers in
terms of SSIM; however, our method (w/) achieved a slightly
higher score on average, which is the same case as that in
MSE.However, for LPIPS,weobtained a slightly lower score
in comparison; however, it should be noted that, although we
did not train on the basis of the LPIPS score, we still had
sequences that showed comparable scores.

4.5 Events to HDR Image

Event stacks have rich information for HDR image recon-
struction. In many cases, some parts of the scene are not
visible in the APS image because of its low dynamic range,
although many events might be triggered, such as the region

Fig. 12 HDR imaging against direct sunlight (extreme illumination)
sequence (Scheerlinck et al. 2018). The predicted output trained under
extreme light conditions (w/) is sharper without any unwanted black
areas than that trained without such conditions (w/o)

under the table in Fig. 1 or the checkerboard pattern at the
top-left part of the stacked image in Figs. 2 and 13 . Those
examples are from dark illumination scenes, but normal cam-
eras also fail in excessive illumination, such as that shown in
Fig. 12.

We took one further step in reconstructing images, as
shown in Figs. 13 and 12 , where we show the ability to
reconstruct images in HDR scenes and to recover details
that cannot be recovered using APS frames. This reflects one
advantage of the event camera, namely, the higher dynamic
range. The reconstructed images can preserve the structure
of the scene in all areas. The trained network using SBN per-
forms better by producing superior results in HDR scenes as
well. This characteristic can be very useful for autonomous
driving or tracking applications under extreme illumination
conditions. One example is when a car enters a tunnel; stan-
dard cameras can get blacked out owing to low illumination
or when exiting the tunnel. The camera can become saturated
by the excessive amount of light suddenly flooding inside the
aperture. The same example holds for a robot vacuum cleaner
going under a piece of furniture while moving on the floor
and experiencing major illumination changes.

The proposedmethod creates well-structured images even
with a small number of events in the input image as in
the time t0, which is the starting state of the sequence in
Fig. 13. Unlike the method of Reinbacher et al. (2016),
our method is not related to any previous state; therefore,
from a few events, our method can create acceptable outputs.
Furthermore, since their method uses the previous states, it
sometimes propagates previous erroneous parts to its next
frames as a shadow-like or a hollow artifact.
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Fig. 13 Examples of HDR image generation. Reconstruction from the
“hdr_boxes” scene (Mueggler et al. 2017). Our SBT and SBN results
clearly recovered more HDR details from the start of the sequence
without blur or any shadow such as artifacts. A slight difference in
performance between SBT and SBN is visible

4.6 Temporal Consistency

Our method is mainly designed for reconstructing intensity
images from events, not from sequences, to be considered as
a consistent video. However, when events have overlapping
common data in nearby frames in a sequence, they will be
more consistent over time. To quantitatively evaluate the con-

Table 7 Impact of different loss functions on the depth and optical flow
estimation using the simulated datasets

cGAN+L1 cGAN+L2 L1 L2

AEE 0.102 0.108 0.103 0.105

Outlier 0.132 0.143 0.128 0.110

Abs Rel 0.047 0.053 0.04 0.036

RMSE log 0.025 0.027 0.017 0.013

SIlog 0.044 0.044 0.016 0.013

Acc: δ < 1.25 0.929 0.925 0.965 0.968

Acc: δ < 1.252 0.962 0.962 0.986 0.989

Acc: δ < 1.253 0.977 0.978 0.993 0.995

Outlier is the percentage of points having an average end-point error
(AEE) of >3 pixels

sistency of the reconstructed intensity images in a sequence,
we used the temporal stability metric from Lai et al. (2018).
This metric is based on the flow warping error between two
consecutive frames of (Ft , Ft+1), as defined in Eq. 4.

Ewarp(Ft , Ft+1)

= 1

ΣN
i=1M

(i)
t

ΣN
i=1M

(i)
t ||F (i)

t − F̂ (i)
t+1||22. (4)

Here, F̂t+1 is the warped frame of Ft+1 and Mt ∈ {0, 1}
is the non-occlusion mask based on Ruder et al. (2016), to
ensure that the calculations are applied only over the non-
occluded regions. This error is averaged over all the frames
in each sequence to give the final error. We used the same
sequences shown in Table 4 and report the warping error for
our proposed method trained with (w/) and without (w/o) the
extreme cases in Table 6. The GT optical flowwas calculated
on the basis of the APS frames. Note that the APS frames
themselves also have a small but non-zero warping error,
and we report them as a reference. We also calculated the

Table 6 Temporal consistency error on diverse real-world sequences

Ewarp(↓) APS EG w/ EG w/o EG w/ +BP EG w/o +BP E2Vid (Rebecq et al. 2019)

dynamic_6dof 0.61 7.45 16.88 4.07 7.23 8.78

boxes_6dof 1.81 19.54 23.93 11.42 12.8 15.69

poster_6dof 1.1 14.5 27.61 9.23 14.25 17.74

shapes_6dof 0.44 2.45 7.58 1.55 2.61 16.66

office_zigzag 0.08 1.31 1.75 0.64 0.77 0.72

slider_depth 0.02 0.33 0.47 0.13 0.16 0.19

calibration 0.36 5.49 6.14 3.05 3.24 2.99

Average 0.63 7.29 12.05 4.3 5.86 8.97

We quantitatively evaluated both of our training methods (EG) with extreme cases (w/) and without including such cases (w/o) in the training. The
reported numbers can be further reduced to the numbers in parentheses by applying blind post-processing (BP) methods (Lai et al. 2018). EG w/
shows comparable results to those of E2Vid on average, and EG w/o shows a slightly higher loss. By applying BP to both of our training settings
(w/ and w/o), our method showed temporally consistent results that were better than those of E2Vid
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temporal loss in Eq. 4 on the sequences from E2Vid and
showed the results in Table 6. For consistency with Table 4,
the stacking method is SBN without any overlapping events.

Table 6 shows that, compared with the warping errors
obtained from the source of our optical flow calculations
(the APS frames), the temporal consistency loss obtained
by our method was higher, although the calculated loss was
within an acceptable and comparable range to that of E2Vid.
Unfortunately, areas in the event stack, where no events
are fired, are prone to fluctuations when moving from one
reconstructed frame to another. This may not be ideal when
creating a video; however, there are blind postprocessing
(BP) methods such as the method of Lai et al. (2018), which,
when given the input event stack and the reconstructed out-
put, can further refine the outputs. We also leveraged that
algorithm for our reconstructed images and report them as
EG (w/ or w/o) + BP.

Our method took about 65ms on average to synthesize a
three-frame stack holding E = 20, 000 events with a spatial
size of 256 × 256 pixels when testing on a single Nvidia
Titan-Xp GPU. The additional postprocessing step using the
same settings took 4 ms. Note that the blind postprocessing
method takes the event stacks as inputs together with the
reconstructed outputs and makes more temporally consistent
outputs. Therefore, if we aim for higher frame rates, which
creates event stacks with high overlapped shares, the BP can
still be applied. Furthermore, if the reconstruction method
creates many black regions like what EG w/ or E2Vid does,
warping a black region to another black region will result in
a lower warp error, indicating that the sequence of images
is consistent. Although this statement is true, it should be
considered together with the image reconstruction quality
metrics when comparing the two methods. In this setting,
EG w/o that creates more changes based on the event stacks
will have a higher warp error as the intensity of these regions
will not be consistent over time.

4.7 Color Event Cameras

Following the intensity image reconstruction from a color
event camera (Moeys et al. 2017), we also show the potential
of our method to synthesize color images as well. We used
the sequences from Scheerlinck et al. (2019), which were
captured using a color DAVIS 346 event camera that utilizes
a Bayer pattern filter on specific pixels, making them more
sensitive to certain colors. This creates four separate streams
of red, green, blue, and green again in a combined stream,
sacrificing the spatial resolution to a quarter of the original
grayscale size. Each sub-stream is given separately to our
network to predict each color channel accordingly, which is
combined back together to make a color output. The input
events, together with the reconstructed outputs using the pre-
vious training for real-world grayscale intensity images, are

Fig. 14 Presentation of the capability of our method in reconstructing
color images from color events. Utilizing the data from a color event
camera (Scheerlinck et al. 2019), we separately predicted the RGBG
events and combined them as the color image. Separate input channels
are shown in regard to their color together with the combined color
output and GT

visualized in Fig. 14 for reference. Our method can produce
colors similar to those of the GT images.

5 Experiments on Direct Depth and Optical
Flow

In this section, we present the experimental results on the
direct depth and optical flow estimations. The geometric
and temporal interrelations between events make it possi-
ble to recover the depth and optical flow directly from the
event streams without any additional requirements. There-
fore, there is no need to reconstruct intensity images first
and then recover the flow or depth as a downstream applica-
tion. Generally, as events are sparse, a one-to-one mapping
of the depth or flow estimation is also sparse. However, our
proposed framework can achieve a dense estimation.

5.1 Optical Flow and Depth Estimation

First, we show that our proposed event stacking methods
(i.elet@tokeneonedot, SBT and SBN) can also be used for
optical flow and depth estimation. To this end, we show in
Fig. 15 that the moving objects and the background scene
leave timely coded traces of the movement in each different
stack. These traces are both from the global or rigid flow,
referring to the camera movement. The local flow refers to
the movement of the objects inside the scene. Note that the
optical flow is coded on the basis of the direction and length
of the per-pixel movement to the hue and saturation, respec-
tively, throughout the rest of this paper.

We show a simple planar scene with the same size as that
of black filled circles having the same distance as that of the
background, which is extended by adding three horizontal
bars shaping a staircase in the second scene. In the simulated
sequences, the camera moves freely in 6DoF over the scene.
In Fig. 15, the dot pattern (filled black circles) on the surface
creates positive (red) and negative (blue) events depending
on the movement of the camera and on the topology of the
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Fig. 15 Logic behind the optical flow and depth estimation in a stack
of events for 20K, 60K, and 150K events in a three-channel SBN stack
over a planar scene. The following tail of events visualizes the relative
motion between an observer and a scene over time, which is called the
optical flow. The depth can also be inferred in regard to the different
sizes of the tails in different areas of the stacked events. The original
grayscale image of the scene at the end of the stacking period is also
presented for better visual comparison

scene. The samples show how each segment of the image has
moved in respect to its previous location.

Various numbers of events including 20K events, 60K
events, and even 150K events were added to the three-
channel stacks. Note that, in our typical experiments, we
do not use the stacks with 150K events; we only utilized
them to show the relation of the stacked events to the optical
flow and depth estimation. Although we mainly show three-
channel stacks in our figures, our method can be designed
and trained using any number of channels as input stacks,
as explained in the previous sections. For a specific dot in
Fig. 15 (e.glet@tokeneonedot, in the extreme case of 150K
events in a three-channel stack), its current location is usually
dark purple and its tail colored in green and orange shows
its previous locations. This indicates that the timestamp of
purple is bigger than those of the other two colors: Tpurple

> Tgreen > Torange.
On the basis of the event stacks, we can see the camera

moving upward and slighting to the right. It is worth noting
that too few events have the risk of losing the optical flow
in specific regions and that too many events have the risk
of overriding previous events and destroying the path of the
optical flow, resulting in wrong estimations.

Depth is closely related to optical flow in terms of the logic
behind the estimation process. Imagine two lines sweeping in
the horizontal directionwith the same speed and both parallel
to the image plane but one is closer to and the other one is
farther from the image. The line that is closer to the camera
will create many more events in the same period because it
changes more pixel values on its edge along its sweep line
andwill have a longer tail of events. If we accumulate them at
a specified time, this can be used as a measure to estimate the
depth. As shown in Fig. 15, the longer tail of events are for
the dots close to the camera and the smaller ones are for those
far from it. The same principle applies to more complicated
scenes.

5.2 Impact of the Loss Function

The simulated datasets mentioned in Sect. 3.1 were used
to perform our ablation study of the loss function on the depth
and optical flow. Fig. 16 shows the outputs of the depth and
flow reconstruction for a sample test scene using the different
loss functions. The quantitative comparisons are also shown
in Table 7. Like in the intensity image reconstruction, the L1

andL2 terms by themselves do an excellent job in predicting
the overall dense flow of the scene; however, they tend to
blur out the fine details. On the other hand, cGAN was able
to recover very fine detailswithmuch clearer edges; however,
it might create fine high-frequency edges in some regions.
The reported numbers are the average endpoint error (AEE)
computed in pixels, representing the distance between the
end points of the predicted ( f ′) and the GT ( f ) flow vectors:

AEE = 1

n
Σ‖−→f − −→

f ′ ‖2. (5)

The percentage of outliers reported in the table is considered
as the number of points with AEE >3 pixels. For a quan-
titative scale-invariant depth metric, we used the accuracy
(Acc), scale invariant logarithmic error (SILog), absolute rel-
ative distance (AbsRel), and logarithmic mean squared error
(RMSELog):

Fig. 16 Estimation of the depth (bottom) and optical flow (top) using
different optimization functions on the simulated inputs. Using GANs
helps in preventing fading details
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Table 8 Quantitative comparison of the optical flow prediction

outdoor_day_1 indoor_flight_1 indoor_flight_2 indoor_flight_3

(Zhu
et al.
2019)

(Zhu
et al.
2018)

Ours Ours M (Zhu
et al.
2019)

(Zhu
et al.
2018)

Ours Ours M (Zhu
et al.
2019)

(Zhu
et al.
2018)

Ours Ours M (Zhu
et al.
2019)

(Zhu
et al.
2018)

Ours Ours M

AEE ↓ 0.32 0.49 0.23 0.17 0.58 1.03 0.28 0.20 1.02 1.72 0.30 0.23 0.87 1.53 0.31 0.23

Outlier ↓ 0.0 0.2 0.1 0.1 0.0 2.2 0.1 0.1 4.0 15.1 0.1 0.1 3.0 11.9 0.1 0.1

Since our method predicts a dense estimation, we mask it with the regions where actual events are triggered and label it as “Ours M.” Compared
with E2FDE (Zhu et al. 2019) and EV-FlowNet (Zhu et al. 2018), which were also trained using only the sequences from outdoor_day_2, our
method produced optical flow predictions with better quality

Fig. 17 Qualitative presentation of our intensity, depth, and optical
flow estimations solely from events through minor modifications on the
last layer of our proposed network using separate training settings. Our

model is versatile as it can be generalized to other tasks by estimating
the target task with high quality and with a dense representation

Acc = % of di s.t . max(
di
d ′
i
,
d ′
i

di
) = σ < th. (6)

SI Log = 1

n
Σa2i − 1

n2
(Σai )

2, ai = log di − log d ′
i . (7)

AbsRel = 1

n
Σ

‖d − d ′‖
d ′ . (8)

RMSELog =
√
1

n
Σ‖ log d − log d ′‖2. (9)

On the basis of the quantitative results, we can see that cGAN
+L1 reconstructed the output flow estimations better in the
ESIM data, and, therefore, we utilized it in our experiments.

We used the real-world driving dataset MVSEC and sep-
arately created all three outputs of the intensity depth and
optical flow from one input, namely the event stack. The
results are shown in Fig. 17 for the challenging indoor, out-
door, day, and night scenes. The top three sequences from
MVSEC were indoor_flight followed by outdoor_day1 and
outdoor_night. One can see that our method can predict the
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intensity, dense depth, or dense optical flowwith high quality
comparable to that of the GT data in each class.

5.3 Comparison to RelevantWorks

We compared the depth and optical flow predictions of our
approach with those of the recent methods such as E2FDE
(Zhu et al. 2019), EV-FlowNet (Zhu et al. 2018), and ECN
(Ye et al. 2018), which are well-designed deep learning-
based frameworks. Following the same settings and using
the same real-world dataset, we trained our network on the
event sequence of outdoor_day_2 and test on outdoor_day_1
and three indoor_flight sequences from the MVSEC dataset.
Table 8 shows the results for the optical flow estimation,
where the comparison results with E2FDE and EV-FlowNet
are listed. As ECN used 80% of the indoor scenes for the
training and the other 20% and the outdoor_day_2 sequence
for the testing, we could not compare our method with it.
We also included a qualitative comparison with EV-FlowNet
(Zhu et al. 2018), whose code is publicly available, in Fig. 19
to show the difference between these methods in terms of
optical flow estimation.

Unlike E2FDE (Zhu et al. 2019) and EV-FlowNet (Zhu
et al. 2018) in Table 8, our method reported the dense opti-
cal flow predictions even on regions where events were not
triggered. Therefore, we also reported the performance of
our algorithm by masking the flow results to locations where
events existed, labeled as “Our M.” In terms of the AEE, our
method showed superior performance specifically on the out-
door_day_1 sequence, which was within the same domain of
data used to train the network.We also obtained better results
when predicting the optical flow of indoor_flight scenes,
although they were cross-validated for the indoor domain.
The masked outputs usually had even lower reported errors,
showing the importance of the events triggered over the scene
(Table 9).

Using the simulated datasets only for the training while
validating the real-world results did not obtain comparable
results; however, it is considered a common issue in cross-
dataset validation. Sample outputs are shown in Fig. 18. Our
simulated datasets for the depth and flow did contain 3D
objects; however, they were all static objects with simple
shapes in which the camera was only moving. Making such
a dataset is more challenging and is out of the scope of this
work. Therefore, the dataset does not include complicated
details and has scenarios where the objects and camera are
simultaneously moving. This may slightly improve the pre-
dictions as it is more similar to real-world dataset on this
aspect.

One problem that prevents cross validation in general
from the simulated datasets used for the training to the
real-world dataset used in the testing and vice versa is the
presence of noise, although it is not only limited to that. As

Fig. 18 Training using simulated events only and cross-evaluation on
the real-world dataset. Unfortunately, the depth and flow outputs do not
generalize well using only the simulated event data

Fig. 19 Qualitative comparison between our method and EV-FlowNet
(Zhu et al. 2018) in terms of optical flow estimation.We used a common
color wheel for the comparison. We can see that our method can create
dense relations of the optical flow, whereas EV-FlowNet creates sparse
outputs

explained in Sect. 3.3, the mismatches between event stacks
and their paired targets, namely, the intensity, depth, or flow
data, change the predictions when such data are used in the
training set. The event stack sometimes contains locations
where events are available; however, there is no one-to-one
relation between its paired target data. This makes the net-
work learn to remove or ignore events in certain regions.
These mismatches prevent our network from being reason-
ably fine-tuned to the real-world dataset after using it on the
simulated datasets, and, therefore, training only on the real-
world dataset had higher quality outputs.

Generally, by comparing the results of the outdoor scenes
at day time to those at night time,we conclude that, to obtain a
higher quality, the dataset used for the training should be very
similar to the test dataset or at least should contain enough
similar scenes and conditions to those contained in the latter
dataset. Failure cases are mainly related to the mismatches
between the triggered events and the intensity or depth sen-
sor outputs in the dataset, which also affects the optical flow.
The source of this can be lower dynamic range images and
the accumulation of depth in moving objects sensed by the
LiDAR depth sensor. Furthermore, on driving scenes, fast-
moving cars can trigger many events as the rear tail, which
saturates overlapping objects or blinds out the background
scenes. The latter can be recovered partially using SBT. Far-
away triggered events in distant buildings or clouds also
create negative predictions if the training set does not include
sufficient samples specifically for depth estimation.
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Table 9 Quantitative comparison of the depth prediction

outdoor_day outdoor_night

(Zhu et al. 2019) (Ye et al. 2018) Ours Ours M (Zhu et al. 2019) (Ye et al. 2018) Ours Ours M

Abs Rel ↓ 0.36 0.33 0.29 0.30 0.37 0.39 0.34 0.36

RMSE log ↓ 0.41 0.36 0.36 0.37 0.42 0.42 0.37 0.38

SIlog ↓ 0.16 0.14 0.15 0.16 0.15 0.18 0.15 0.17

Acc: δ < 1.25 ↑ 0.46 0.97 0.68 0.80 0.45 0.95 0.59 0.67

Acc: δ < 1.252 ↑ 0.73 0.98 0.85 0.92 0.71 0.98 0.82 0.86

Acc: δ < 1.253 ↑ 0.88 0.99 0.93 0.96 0.86 0.99 0.94 0.96

We compared ourmethodwith E2FDE (Zhu et al. 2019) and ECN (Ye et al. 2018). “OursM” represents the experiment results where the calculations
were performed only on the triggered event locations. In comparison with the other methods, our method was able to generate comparable depth
outputs

6 Conclusion

In this paper, we demonstrated how our cGAN-based
approach could benefit from the properties of event cameras
to accurately reconstruct HDR non-blurred intensity images
and high-frame-rate videos from events. We first proposed
two novel event stacking methods (i.elet@tokeneonedot,
SBT and SBN) for both image and video reconstruction from
events using the network. We then showed the advantages of
using event cameras to generate high-dynamic-range images
and high-frame-rate videos through experiments based on
our datasets prepared from real-world sequences available
online and using an event camera simulator. To show the
robustness of our method, we compared our framework
with other existing reconstruction methods. We showed that
our method outperformed the other methods on the pub-
licly available real-world dataset. We also confirmed that
it is possible to generate high-dynamic-range images even
under extreme illumination conditions and also non-blurred
images under fast motion. Finally, we extended our proposed
event stacking method and framework to estimate the dense
depth and optical flow from events. The experimental results
showed the versatility of our method for different tasks.
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