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ABSTRACT

Region modification-based data augmentation techniques
have shown to improve performance for high level vision
tasks (object detection, semantic segmentation, image classi-
fication, etc.) by encouraging underlying algorithms to focus
on multiple discriminative features. However, as these tech-
niques destroy spatial relationship with neighboring regions,
performance can be deteriorated when using them to train al-
gorithms designed for low level vision tasks (low light image
enhancement, image dehazing, deblurring, etc.) where textu-
ral consistency between recovered and its neighboring regions
is important to ensure effective performance. In this paper,
we examine the efficacy of a simple copy-blend data aug-
mentation technique that copies patches from noisy images
and blends onto a clean image and vice versa to ensure that
an underlying algorithm localizes and recovers affected re-
gions resulting in increased perceptual quality of a recovered
image. To assess performance improvement, we perform ex-
tensive experiments alongside different region modification-
based augmentation techniques and report observations such
as improved performance, reduced requirement for training
dataset, and early convergence across tasks such as low light
image enhancement, image dehazing and image deblurring
without any modification to baseline algorithm1.

Index Terms— Data Augmentation, Low Light Image
Enhancement, Image Dehazing, Image Deblurring

1. INTRODUCTION

Data Augmentation (DA) is widely used as a regularization
mechanism for ensuring robust and generalized performance
of deep neural networks for high level tasks (e.g. image
classification, object detection, instance segmentation) by
increasing diversity within training set. Recent approaches
[3, 4, 5, 6] focus on modification of certain regions within
an image either by altering or dropping (setting pixel values

1This research was supported by KAIST-KU Joint Research Center,
KAIST, Korea (N11200035). We gratefully acknowledge the GPU dona-
tion from NVidia used in this research. Codes for experiments conducted in
this paper is available at https://github.com/PS06/Copy_Blend.
Correspondences should be made at pranjayshyam@kaist.ac.kr
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Fig. 1: Landscape (SSIM vs Maximum Augmentation Scale)
demonstrating performance achieved by using different data aug-
mentation strategies for Low Light Image Enhancement using DLN
[1] on LOL dataset [2].

to a fixed number) them to ensure underlying Convolutional
Neural Network (CNN) is able to emphasize upon affected
discriminative regions for generating desired predictions.
However, this approach is not suited for low level tasks such
as image enhancement or restoration (e.g. image dehazing,
deblurring) wherein spatial consistency between recovered
and neighboring pixels is necessary. Instead we observe
that algorithms developed for such tasks when trained with
augmentations distorting spatial properties result in poor per-
formance (Fig. 1) compared to using simple augmentations
like flipping and rotating (Baseline).

Furthermore enhancement/restoration tasks can exhibit
diverse range of variations affecting different parts of an im-
age, thus necessitating the underlying network be able to lo-
calize and determine the extent of enhancement or restoration
necessary to generate a clean image. Ensuring such a distri-
bution of variations within the training dataset is challenging
and expensive, whereas using uniform distribution-based syn-
thetic training sets does not ensure consistent performance in
real conditions [8]. Thus a DA technique that improves model
performance (without increasing parameter count) by encour-
aging it to localize and determine extent of recovery without
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Fig. 2: Demonstration of different data augmentation techniques on the LOL dataset.

requiring additional data would be an ideal solution. Aiming
to achieve such a mechanism for super resolution, Cut Blur[7]
proposed to cut patches from high resolution images, scale
and paste onto a low/high resolution input image. However
this approach results in sharp transitions and thus trains the
model only for strong variations and avoids scenarios where
weak intensity variations are present for events such as haze,
motion blur, low light imaging. In this paper we extend this
work and examine the efficacy of a simple copy-blend mech-
anism that copies patches of varying shapes and sizes from
ground truth and blends onto noisy input at the same position
and vice versa. This approach generates a diverse range of
training samples with varying intensities of variation and thus
ensures an underlying CNN emphasizes on where, what and
how much the correction should be performed in order to
closely match the recovered image with ground truth. We
additionally observe that training CNNs for large epochs with
copy-blend does not result in overfitting arising from data
memorization, motivating us to explore if using the proposed
mechanism allows for reducing the size of training set for
enhancement and restoration tasks.

2. RELATED WORKS

Data augmentation techniques are gaining interest from re-
search community primarily to reduce reliance on large scale
well annotated datasets for training models with increased ro-
bustness and generalizability. An early approach, Mixup [5]
mix labels and pixels from two samples within training set, es-
sentially generating new synthetic samples containing labels
of both samples. Cut-mix [4] extended mixup [5] concept
by sampling and pasting rectangular patches and mixing la-
bels proportional to patch area. While these techniques focus
on modifying pixels, Cutout [6] proposed randomly setting
pixels within a square patch to 0’s resulting in an aggressive
regularization effect. Though such methods improve model
accuracy, it comes at the cost of model robustness. To alle-
viate such issues, Patch Gaussian [9] proposed adding Gaus-
sian noise patches randomly throughout an image. Motivated
by the success of regional modification techniques, different
works focused on leveraging them independently or combin-
ing a set of such methodologies to improve performance for
other tasks such as object detection [3, 10, 11] and instance
segmentation [12].

To evaluate performance improvement achieved using

these DA techniques, we consider tasks such as image de-
hazing, deblurring and low light image enhancement (LLIE).
For our evaluation purpose, we use {MSNet [13], DIDH
[8]}, {AFNet [14], DLN [1]}, {DeblurGANv2 [15], DM-
PHN [16]} algorithms for the task of dehazing, deblurring
and LLIE as they represent SoTA algorithms and use their
original implementation.

3. COPY BLEND ALGORITHM

Given a data pair (IIN , IOUT ) depicting noisy image and its
corresponding clean image, a floating point mask (α ∈ [0, 1])
representing regions and intensities to be copied from a clean
image onto a noisy input image is constructed. The new input
image (I ′IN ) is constructed by blending two images following
the relation,

I ′IN = (1− α) ∗ IIN + α ∗ IOUT (1)

In the proposed mechanism, we construct mask using two
control parameters namely maximum patch size (MPMAX)
and blend intensity (β ∈ [0, 1]). This allows us to introduce
patches of random numbers and sizes and distribute it ran-
domly across image, generating non-homogeneous distribu-
tion. Since blending is performed on same location between
input and output images, we can set maximum patch size to
match spatial resolution of an image, however we observe
from Fig. 1 that keeping maximum augmentation higher than
a threshold doesn’t aid in improving performance. Further-
more, we observe (Sec. 4.4) that varying patch shapes and
number of patches does not improve performance substan-
tially. Hence for our experiments, we set the number of square
patches as 1 with maximum patch size of 0.2 w.r.t training im-
age.

4. EXPERIMENTAL EVALUATION

4.1. Datasets and Evaluation Metrics
In order to evaluate the effect of different algorithms for
dehazing, deblurring, and LLIE, we utilize twin datasets to
establish performance consistency and utilize NTIRE-19 [17]
and NTIRE-20 [18] datasets for dehazing, GO PRO [19] and
Real Blur [20] datasets for deblurring, and LOL [2] and SICE
[21] datasets for LLIE. Subsequently we utilize traditional
pixel and structural metrics such as Peak-Signal-to-Noise-
Ratio (PSNR, capturing relationship between two images at
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Fig. 3: Enhancement and restoration results of different algorithms trained within strong baseline formulation with and without the copy blend
augmentation and corresponding performance metrics (PSNR / SSIM / NIQE). We can observe increased perceptual and structural quality in
enhanced images.

Table 1: Properties of different datasets

Dataset Name PSNR / SSIM / NIQE Resolution # Val Images
NTIRE-19 9.11 / 0.49 / 5.04 1600 × 1200 10
NTIRE-20 10.42 / 0.46 / 2.24 1600 × 1200 5
GO PRO 25.64 / 0.79 / 2.70 1280 × 720 1111
Real Blur 26.55 / 0.80 / 4.97 675 × 769 980
LOL 7.77 / 0.19 / 5.71 600 × 400 15
SICE 12.26 / 0.57 / 4.13 5472 × 3648 58

pixel level on log scale), Structural Similarity Index Measure
(SSIM, capturing structural similarity using luminance, con-
trast and structure between two images) and Image Quality
Metrics such as Naturalness Image Quality Evaluator (NIQE,
no reference metric to determine naturalness of an image)
metrics and perform experiments on a computer equipped
with Intel 8700K CPU, Titan V GPU and Pytorch 1.6 without
any modifications to training settings of evaluation algo-
rithms. For a comprehensive overview of different datasets,
we summarize their properties in Table 1. In order to con-
struct a strong baseline, we mix synthetic and real samples
to train an underlying algorithm that is shown to improve
algorithm performance and has been studied for dehazing in
[8] and LLIE in [1].

4.2. Effect of Various Augmentation Techniques

In order to identify best suited augmentation scale for various
techniques, we examine the relationship between an augmen-
tation scale and performance on LLIE using LOL dataset and
DLN algorithm, summarizing results in Fig. 1. For represent-
ing LLIE results we use feature metrics because pixel metrics
(such as PSNR) assume pixel independent relationship and
hence are poor metrics for measuring structural properties of
an image. We observe that max augmentation scale of 0.2
results in the peak performance for nearly all DA techniques
and hence we fix its value at 0.2 for subsequent experiments.

Table 2: Peak performance achieved by DLN, MSNet and Deblur-
GANv2 under different augmentation techniques

Algorithm DLN MSNet DeblurGANv2
PSNR / SSIM PSNR / SSIM PSNR / SSIM

Baseline 21.33 / 0.81 13.32 / 0.53 29.55 / 0.93
CutMix 20.78 / 0.83 13.51 / 0.54 29.17 / 0.91
Mixup 20.57 / 0.81 13.05 / 0.49 29.23 / 0.91
Cut Blur 21.39 / 0.83 13.77 / 0.60 29.99 / 0.94
Cut Out 21.42 / 0.81 13.75 / 0.58 29.51 / 0.92
Copy Blend 21.47 / 0.86 14.27 / 0.62 29.91 / 0.93

We then extend the examination towards other tasks (dehaz-
ing and deblurring) and evaluate performance using MSNet
and DeblurGANv2 algorithms while summarizing qualitative
results in Table 2. When applying cut-out natively, we ob-
serve performance of LLIE algorithms to improve, however
for dehazing and deblurring the performance reduces drasti-
cally. We subsequently changed the pixel value of cut-out
regions to 128 (gray pixels), representing haze conditions and
observed dehazing performance to improve.

Hence we corroborate that cut-out techniques can be mod-
ified according to task, for improving model performance. As
for extreme augmentations such as cut-mix and mix-up, we
observe reduction in performance owing to breaking spatial
characteristics between different regions. Furthermore, copy-
blend and cut-blur augmentations tend to improve perfor-
mance, with copy-blend improving the performance substan-
tially specifically for dehazing and deblurring tasks, which we
believe to arise from the ability to ensure varying intensity of
degradations unlike copy-blur that results in strong degrada-
tions. We present some visual results in Fig. 3 and elaborated
quantitative results in Tab. 3. From these observations, we
conclude that low level vision related tasks require spatial
consistency within an input image for efficient training. One



Table 3: Extended Evaluation of Copy Blend Augmentation

Algorithm PSNR / SSIM / NIQE PSNR / SSIM / NIQE
LOL SICE

DLN [1] 21.34 / 0.82 / 3.05 16.44 / 0.60 / 2.32
+ CB 21.47 / 0.84 / 2.84 16.51 / 0.62 / 2.37
AFNet [14] 20.17 / 0.81 / 3.17 18.75 / 0.64 / 2.42
+ CB 20.84 / 0.84 / 2.73 18.91 / 0.65 / 2.49

NTIRE-19 NTIRE-20
MSNet [13] 13.32 / 0.53 / 4.21 12.04 / 0.50 / 4.08
+ CB 14.71 / 0.58 / 3.87 13.97 / 0.57 / 3.77
DIDH [8] 15.71 / 0.54 / 4.71 14.71 / 0.45 / 5.34
+ CB 17.18 / 0.62 / 3.47 18.16 / 0.69 / 3.28

GO-PRO Real Blur
DeblurGANv2 [15] 29.55 / 0.93 / 3.13 28.70 / 0.86 / 3.49
+ CB 29.91 / 0.93 / 3.07 31.26 / 0.92 / 3.19
DMPHN [22] 30.21 / 0.93 / 2.64 29.71 / 0.93 / 2.76
+ CB 30.21 / 0.94 / 2.73 31.18 / 0.94 / 2.50
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Fig. 4: Performance landscape (PSNR vs Fraction of Training
Dataset) of proposed copy blend for task of LLIE, Image Dehaz-
ing and Deblurring using LOL, NTIRE-19 and GO PRO datasets
respectively.

noticeable exception is of cut-out that improves model per-
formance on LLIE and dehazing tasks but deteriorates model
performance on deblurring. We presume this to be the out-
come of cut regions representing extremely dark/hazy regions
and hence aiding in improving performance, however the cut
regions for deblurring represent lost information and thus
deteriorate the performance.

4.3. Performance under reduced training data
As CNN based models are notoriously data hungry, we exam-
ine whether using augmentations such as cut-out, copy-blend
and cut-mix can reduce the amount of paired training dataset
while achieving peak performance. So, we retrain all algo-
rithms from scratch and vary training dataset size from 20%
with incremental steps of 10% of the original dataset, while
keeping the number of training epochs at 1000 for LLIE, de-
blurring and dehazing. We observe (Fig. 4) these augmenta-
tion techniques to aid in achieving peak model performance
across all algorithms, while relying on reduced training data,
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Fig. 5: Peak performance achieved with and without copy blend aug-
mentation, when using complete dataset for training.

1 2 3 4 5 6 7 8 9 10
Number of Patches

17

18

19

20

21

22

PS
NR

circle
square

rectangle
polygon

all

Fig. 6: Peak performance achieved by varying patch size and number
of patches

thus allowing in developing data efficient algorithms without
any overfitting. Furthermore, we observe the algorithm opti-
mization to be achieved in significantly less number of epochs
as summarized in Fig. 5.

4.4. Varying Augmentation Shapes and Number of Patches
While we fixed the number of patches and shapes, in this sec-
tion we examine the effect of increasing number of patches
and varying the shapes of augmentation. Based on the perfor-
mance summary in Fig. 6, we observe the peak performance
to be achieved when the number of patches is 2 and shape as
square.

5. CONCLUSION

In this paper we compared different region modification
based augmentation approaches along with their extension,
copy blend, as a data augmentation technique for low level
vision tasks. We also evaluated their impact on number of im-
ages within training set, number of training epochs on model
performance, without any modifications to underlying CNN.
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